K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ABH=góc ABM=1/2*sđ cung BM

góc AEB=1/2(sđ cung BC+sđ cung DM)

=1/2(sđ cung BC+sđ cung MC)

=1/2*sđ cung BM

=>góc AEB=góc ABE

=>ΔABE cân tại A

mà AH là phân giác

nên AH vuông góc với BE

b: Xét ΔMDE và ΔMBD có

góc MDE=góc MBD

góc DME chung

Do đó: ΔMDE đồng dạng với ΔMBD

=>MD/MB=ME/MD

=>MD^2=MB*ME

a: góc AEB=(sd cung BC+sđ cung DM)/2

=1/2(sđ cung BC+sđ cung CM)

=1/2*sđ cung BM

=góc ABM

=góc ABE

=>ΔABE cân tại A

mà AH là phân giác

nen AH vuông góc với BE

b: Xét ΔMDE và ΔMBD có

góc MDE=góc MBD

góc DME chung

=>ΔMDE đồng dạng với ΔMBD

=>MD/MB=ME/MD

=>MD^2=MB*ME

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
31 tháng 7 2017

a)

MA và MB là các tiếp tuyến của (O)

=> OM _I_ AB mà C thuộc OM

=> AC = BC 

OB = OA = OC = OD ( = R)

=> \(\Delta ACD\) vuông tại A và \(\Delta BCD\) vuông tại B

\(\Rightarrow\Delta ACD=\Delta BCD\left(ch-cgv\right)\)

\(\Rightarrow\Delta ACD~\Delta BCD\)

\(\Rightarrow\frac{AC}{BC}=\frac{AD}{BD}\)

\(\Rightarrow AC\times BD=AD\times BC\left(\text{đ}pcm\right)\)

b)

AI là đpg của \(\Delta ACD\)

\(\Rightarrow\frac{IC}{ID}=\frac{AC}{AD}\) mà \(\frac{AC}{AD}=\frac{BC}{BD}\)

\(\Rightarrow\frac{IC}{ID}=\frac{BC}{BD}\)

=> BI là đpg của \(\Delta BCD\) (đpcm)

31 tháng 5 2019

a) MA và MB là các tiếp tuyến của (O)

=> OM _I_ AB mà C thuộc OM

=> AC = BC 

OB = OA = OC = OD ( = R)

=> \Delta ACDΔACD vuông tại A và \Delta BCDΔBCD vuông tại B

\Rightarrow\Delta ACD=\Delta BCD\left(ch-cgv\right)⇒ΔACD=ΔBCD(ch−cgv)

\Rightarrow\Delta ACD~\Delta BCD⇒ΔACD ΔBCD

\Rightarrow\frac{AC}{BC}=\frac{AD}{BD}⇒BCAC​=BDAD​

\Rightarrow AC\times BD=AD\times BC\left(\text{đ}pcm\right)⇒AC×BD=AD×BC(đpcm)

b)

AI là đpg của \Delta ACDΔACD

\Rightarrow\frac{IC}{ID}=\frac{AC}{AD}⇒IDIC​=ADAC​ mà \frac{AC}{AD}=\frac{BC}{BD}ADAC​=BDBC​

\Rightarrow\frac{IC}{ID}=\frac{BC}{BD}⇒IDIC​=BDBC​

=> BI là đpg của \Delta BCDΔBCD (đpcm)

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk