Cho tam giác ABC cân tại A. Trên 2 cạnh AB, AC lấy 2 điểm M,N sao cho AM=AN, chứng minh rằng:
a) các hình chiếu BM và CN trên BC bằng nhau
b) BN> BC+MN :2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ MH \(⊥\)BC ; NK \(⊥\)BC
tam giác MBH = tam giác NCK ( cạnh huyền, góc nhọn )
suy ra BH = CK
b) tam giác ABN = tam giác ACM ( c.g.c )
suy ra BN = CM
Dễ thấy MN // BC
suy ra MN = HK ( tính chất đoạn chắn )
Ta có : BN > BK ; CM > CH ( quan hệ giữa đường xiên và đường vuông góc )
Vậy BN + CM > BK + CH hay BN + BN > ( BH + HK ) + CH
2BN > ( BH + CH ) + HK ; 2BN > BC + MN \(\Rightarrow BN>\frac{BC+MN}{2}\)
b: \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)
\(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)
Do đó: \(\widehat{AMN}=\widehat{ABC}\)
mà hai góc này ở vị trí đồng vị
nên MN//BC
3b)
Ta có tg BNK vuông tại K ->BN>BK
Ta có IK=MN(tính chất đoạn chắn)
Ta có : BC+MN=BK+KC+MN=BK+BI+IK=2BK
Vì BK<BN->2BK<2BN->BN>BK/2->BN>BC+MN/2