Tìm x biết \(\left[\frac{1}{3}x^3\left(3x-1\right)^m-\frac{1}{3}x^{m+3}\right]:\frac{1}{3}x^3=0\left(m\varepsilon N\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
- Gọi chiều dài miếng đất là x ( m, x > 6 )
=> Chiều rộng miếng đất là : x - 6 ( m )
=> Chu vi miếng đất đó là : \(2\left(x+x-6\right)\) ( m )
Theo đề bài chu vi mảnh đất đó là 60m nên ta có phương trình :
\(2\left(x+x-6\right)=60\)
=> \(2x-6=30\)
=> \(2x=24\)
=> \(x=12\) ( TM )
Mà diện tích mảnh đất là : \(x\left(x-6\right)\)
=> Smảnh đất = \(12\left(12-6\right)=12.6=72\left(m^2\right)\)
a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)
⇔ \(6x^2-13x+5-6x^2-11x+2=0\)
⇔ \(24x=7\)⇔\(x=\frac{7}{24}\)
b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)
⇔ \(9x^2-4-9x^2+6x-1=5\)
⇔ \(6x=10\)⇔ \(x=\frac{5}{3}\)
c) \(x^2=-6x-8\)⇔\(x^2+6x+8=0\)⇔\(\left(x+2\right)\left(x+4\right)=0\)
⇔\(\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
\(\left|x-3\right|+\left|x+2\right|=7\)
-TH: \(x< -2\) thì ta được phương trình :
\(3-x+-x-2=7\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\left(c\right)\)
-TH: \(-2\le x< 3\) thì ta được phương trình:
\(3-x+x+2=7\)
\(\Leftrightarrow5=7\)(vô lí nên loại)
-TH: \(x\ge3\) thì ta được phương trình:
\(x-3+x+2=7\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(c\right)\)
Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)
3a)Ta xét:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow0< x< 2\)
-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(x>3\) thì \(x>0\), \(x-2>0\) và \(x-3>0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)
\(\Rightarrow x>3\)
Vậy nghiệm của phương trình là 0<x<2 và x>3
b)Dựa vào câu a ta có:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow x< 0\)
-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)
\(\Rightarrow2< x< 3\)
Vậy nghiệm của phương trình là x<0 và 2<x<3
Không biết có đúng không nữa