cho tam giác ABC,AB lớn hơn AC,điểm N bất kỳ thuộc tia phân giác góc ngoài điểm A . CMR : NB + NC lớn hơn AB + AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ đường vuông góc với tia pg của góc ngoài đỉnh C và cắt tia đối của tia CB tại A'.
Cm được MA = MA', CA = CA'.
Theo BĐT trong tam giác MBA' : MA' + MB > BA' = BC + CA' = BC + AC ⇒⇒ MA + MB > BC + AC (đpcm)
đúng ko bn nhỉ ?????
nếu đúng thì tk mk nha
:#
Từ C kẻ đường thẳng vuông góc với AN, nó cắt AB tại D
Chứng minh được tam giác AHD=tam giác AHC(g.c.g)
=> AD=AC;DH=CH(cặp cạnh tương ứng)
Lại chứng minh được tam giác NHD=tam giác NHC(c.g.c)
=> DN=CN(cặp cạnh tương ứng)
Xét tam giác BDN ta có:
NB+ND>BDNB+ND>BD(áp dụng bất đẳng thức tam giác)
⇒NB+NC>AB+AD⇒NB+NC>AB+AD(do ND=NC(cmt)ND=NC(cmt))
⇒NB+NC>AB+AC⇒NB+NC>AB+AC(do AD=AC(cmt)AD=AC(cmt))(đpcm)
#rin