cho tam giác abc vuông tại a , có ab = 6cm , ác = 8cm . Đường phan gác của sóc abc cắt ac tại d . Từ c kẻ ce vuông góc với bd tại e
a) Tính độ dài bc và tỉ số ad/dc
b) Cm tam giác abd đồng dạng với tam giác ebc . Từ đó suy ra bd.ec = ad.bc
c) Cm cd/bc = ce/be
d) gọi eh là đường cao của tam giác ebc . Cm ch.cb = ed.eb
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé