Cho tam giác ABC vuông tại A, góc B< 45 độ, Ah vuông góc với BC. Trên HA lấy K sao cho HK=HC. Qua K kẻ đường thẳng song song với BC cắt AB tại E. Trên tia đối tia HA lấy F sao cho HF=AK. Tính góc CFE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chotamgiacabc
gggfffffffffffffffffffffffffwuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuueahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
a) Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
AH=DH(gt)
Do đó: ΔBHA=ΔBHD(hai cạnh góc vuông)
b) Xét ΔHBA vuông tại H và ΔHKD vuông tại H có
HB=HK(gt)
HA=HD(gt)
Do đó: ΔHBA=ΔHKD(hai cạnh góc vuông)
⇒\(\widehat{HBA}=\widehat{HKD}\)(hai góc tương ứng)
mà \(\widehat{HBA}\) và \(\widehat{HKD}\) là hai góc ở vị trí so le trong
nên AB//DK(Dấu hiệu nhận biết hai đường thắng song song)
c) Ta có: AB//DK(cmt)
AB⊥AC(ΔABC vuông tại A)
Do đó: DK⊥AC
Xét ΔDAK có
KH là đường cao ứng với cạnh AD(KH⊥AD)
AC là đường cao ứng với cạnh DK(AC⊥DK)
KH\(\cap\)AC={C}
Do đó: C là trực tâm của ΔDAK(Tính chất ba đường cao của tam giác)
⇒DC⊥AK(đpcm)