Chứng minh a và b thỏa mãn 98.a + (-32).b = 2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Từ điều kiện đề bài ta có a b + b c + c a a b c = 3 ⇔ 1 a + 1 b + 1 c = 3
Áp dụng hai lần bất đẳng thức Côsi cho hai số dương, ta có:
a 2 + b c ≥ 2 a 2 . b c = 2 a b c ⇒ a a 2 + b c ≤ 2 2 a b c = 1 2 b c 1 b . 1 c ≤ 1 2 1 b + 1 c ⇒ a a 2 + b c ≤ 1 4 1 b + 1 c
Tương tự ta có:
b b 2 + c a ≤ 1 4 1 c + 1 a ; c c 2 + a b ≤ 1 4 1 a + 1 b ⇒ a a 2 + b c + b b 2 + c a + c c 2 + a b ≤ 1 2 1 a + 1 b + 1 c = 3 2 .
b^2=ac
b^2+2017bc=ac+2017bc
b(b+2017c)=c(a+2017b)
b/c=(a+2017b)/(b+2017c)
(b/c)^2=((a+2017b)/(b+2017c))^2
b^2/c^2=(a+2017b)^2/(b+2017c)^2
thế b^2=ac ta có
ac/c^2=(a+2017b)^2/(b+2017c)^2
a/c=(a+2017b)^2/(b+2017c)^2
Làm như chắc là sai:vvv
Điều kiện: b\(\ne0\)
Theo đề bài ta có: a-b=2(a+b)
<=>a-b=2a+2b
<=>a-2a=2b+b
<=> -a=3b
<=>a=-3b
=> ab=(-3b).b=-3b2
Ta có: \(\dfrac{a}{b}=\left(a-b\right)\Leftrightarrow a=\left(a-b\right)b=ab-b^2=-3b^2-b^2=-4b^2\)
<=> -3b=-4b2
<=> \(-3b+4b^2=0\Leftrightarrow b\left(4b-3\right)=0\)
=> \(\Leftrightarrow\left[{}\begin{matrix}b=0\left(loai\right)\\4b-3=0\end{matrix}\right.\)
=> \(b=\dfrac{3}{4}\Rightarrow a=-3.\dfrac{3}{4}=-\dfrac{9}{4}\)
Vậy...