Kẻ EH vuông góc với AB; FK vuông góc với AB; FM vuông góc với AC; EN vuông góc với AC (H;K thuộc AB và M;N thuộc AC).
Từ D kẻ DI vuông góc với AB; DG vuông góc với AC (I thuộc AB; G thuộc AC).
-Vì HE//DI => BE/BD= HE/ID (1).
-Vì MF//DG => CF/CD= FM/DG (2).
-Từ (1);(2) => BE/CF. CD/BD= HE/ID :FM/DG= HE/FM (Do DI=DG) (3).
-Tam giác HAE đồng dạng với tam giác MAF (g.g) => HE/MF =AE/AF (4).
-Từ (3);(4) => BE/CF. CD/BD= AE/AF (5).
-Vì DI//KF => BD/BF= DI/KF (6).
-Vì DG//EN => CD/CE= DG/EN (7).
-Từ (6);(7) =>CD/CE :BD/BF= BF/CE. CD/BD= DG/EN: DI/KF= KF/EN (8).
-Tam giác KAF đồng dạng với tam giác NAE (g.g) => KF/FEN= AF/AE (9).
-Từ (8);(9) => BF/CE. CD/BD= AF/AE (10).
-Lấy (5) nhân với (10), ta có: BE/CF. CD/BD. BF/CE. CD/BD= AE/AF. AF/AE= 1.
=> BE/CE. BF/CF. (CD/BD)^2= 1. Vì AD là phân giác của góc BAC => CD/BD= AC/AB => (CD/BD)^2= (AC/AB)^2.
-Từ 2 điều trên => BE/CE. BF/CF. (AC/AB)^2= 1.
=> BE/CE. BF/CF= (AB/AC)^2 (đpcm).
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
mk làm đc rồi bạn càn mk gửi cho không