K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

mk làm đc rồi bạn càn mk gửi cho không

25 tháng 3 2016
Kẻ EH vuông góc với AB; FK vuông góc với AB; FM vuông góc với AC; EN vuông góc với AC (H;K thuộc AB và M;N thuộc AC). Từ D kẻ DI vuông góc với AB; DG vuông góc với AC (I thuộc AB; G thuộc AC). -Vì HE//DI => BE/BD= HE/ID (1). -Vì MF//DG => CF/CD= FM/DG (2). -Từ (1);(2) => BE/CF. CD/BD= HE/ID :FM/DG= HE/FM (Do DI=DG) (3). -Tam giác HAE đồng dạng với tam giác MAF (g.g) => HE/MF =AE/AF (4). -Từ (3);(4) => BE/CF. CD/BD= AE/AF (5). -Vì DI//KF => BD/BF= DI/KF (6). -Vì DG//EN => CD/CE= DG/EN (7). -Từ (6);(7) =>CD/CE :BD/BF= BF/CE. CD/BD= DG/EN: DI/KF= KF/EN (8). -Tam giác KAF đồng dạng với tam giác NAE (g.g) => KF/FEN= AF/AE (9). -Từ (8);(9) => BF/CE. CD/BD= AF/AE (10). -Lấy (5) nhân với (10), ta có: BE/CF. CD/BD. BF/CE. CD/BD= AE/AF. AF/AE= 1. => BE/CE. BF/CF. (CD/BD)^2= 1. Vì AD là phân giác của góc BAC => CD/BD= AC/AB => (CD/BD)^2= (AC/AB)^2. -Từ 2 điều trên => BE/CE. BF/CF. (AC/AB)^2= 1. => BE/CE. BF/CF= (AB/AC)^2 (đpcm).

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao