K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2021

Đặt :

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)

\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)

\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)

\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)

Vậy..

Ta có: \(A=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)

\(\Leftrightarrow2A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2\)

\(\Leftrightarrow2A-A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2-2^{100}+2^{99}+2^{98}+...+2^2+2+1\)

\(\Leftrightarrow A=2^{101}-2\cdot2^{100}+1\)

\(\Leftrightarrow A=1\)

NV
14 tháng 12 2020

\(A=2^{100}-\left(2^{99}+2^{98}+...+2+1\right)\)

Đặt \(B=2^{99}+2^{98}+...+2+1\)

\(\Rightarrow2B=2^{100}+2^{99}+...+2^2+2\)

\(\Rightarrow2B-B=2^{100}-1\Leftrightarrow B=2^{100}-1\)

\(\Rightarrow A=2^{100}-\left(2^{100}-1\right)=1\)

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

7 tháng 8 2021

Đặt A=1 + 2 + 22+ 23+ 24 +... + 299 + 2100

=>2A=2 + 22+ 23+ 24 +... + 299 + 2100+2101

=>2A-A=(2 + 22+ 23+ 24 +... + 299 + 2100+2101)-(1 + 2 + 22+ 23+ 24 +... + 299 + 2100)

=>A=2101-1

 

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100