Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy mẫu của biểu thức trên là:
x26+x24+x22+...+x2+1=(x26+x22+...+x2)+(x24+x20+...+x4+1)
=x2(x24+x20+...+x16+...+1)+(x24+x20+...+x4+1)
=(x24+x20+...+1)(x2+1)
Như vậy\(\frac{x^{24}+x^{20}+x^{16}+...+1}{\left(x^{24}+x^{20}+...+1\right)\left(x^2+1\right)}\)=\(\frac{1}{x^2+1}\)
\(B=\frac{1+x^2+x^4+...+x^{26}}{1+x^4+x^8+...+x^{24}}\)
\(=\frac{\frac{\left(x^2-1\right)\left(1+x^2+x^4+...+x^{26}\right)}{x^2-1}}{\frac{\left(x^4-1\right)\left(1+x^4+x^8+...+x^{24}\right)}{x^4-1}}\)
\(=\frac{\frac{x^{28}-1}{x^2-1}}{\frac{x^{28}-1}{x^4-1}}=\frac{x^4-1}{x^2-1}=x^2+1\)
\(\frac{2016^{26}+2016^{24}+...+2016^4+2016^2}{2016^{24}+2016^{22}+...+2016^2+1}\) \(=\frac{2016^2.\left(2016^{24}+2016^{22}+...+2016^2+1\right)}{2016^{24}+2016^{22}+...+2016^2+1}\)
\(=\frac{2016^2}{1}=2016^2\)
\(\left(-1+\frac{1}{2}\right)\left(-1+\frac{1}{3}\right)\left(-1+\frac{1}{4}\right).....\left(-1+\frac{1}{299}\right)\)
\(=\frac{-1}{2}\left(\frac{-2}{3}\right)\left(\frac{-3}{4}\right)....\left(\frac{-288}{299}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{298}{299}\)( vì có 298 phân số )
\(=\frac{1}{299}\)
Đặt :
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)
Vậy..