Cho ABC có Â = 900 . Tia phân giác BD của góc B(D thuộc AC). Trên cạnh BC lấy điểm E sao cho BE = BA. a) So sánh AD và DE b) Chứng minh: goc EDC= goc ABC c) Chứng minh : AE BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
Suy ra: DA=DE(hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
hay DE⊥BC
Ta có: DA=DE(cmt)
mà DE<DC(ΔDEC vuông tại E có DC là cạnh huyền)
nên DA<DC
b) Ta có: ΔBAC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(1)
Ta có: ΔEDC vuông tại E(cmt)
nên \(\widehat{EDC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(2)
Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EDC}\)(đpcm)
c) Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DA=DE(cmt)
nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BD là đường trung trực của AE
hay BD\(\perp\)AE(đpcm)
a) Xét tam gics BAD và BED ta có:
BD là cạnh chung (gt)
AB=AE (gt)
Góc ABD=góc DBC ( vid BD là phân giác của gốc B)
=> Tam giác BAD=tam gics BED (c.g.c)
=>AD=DE ( 2 cạnh tương ứng)
=> Tam giác BAD= tam giác BED
=> góc BAD=BED(2 góc tương ứng)
=>BED=BAD=90*
Xét tam giác ABC và EDC ta cosL'
BAC=DEC=90*
góc C chung
=> tam giác ABC~tam giác EDC (g-g)
=> goác ABC=EDC
b) Xét tam giác ABE ta có:
AB=BE
=> tam giác ABE cân tại B
mà BD là tia phân giác của góc B
=> BD là đường cao
=> BD vuông góc vs AE
*Tự vẽ hình
a) Xét tam giác ABD và EBD có :
\(\widehat{ABD}=\widehat{DBE}\left(gt\right)\)
BD : cạnh chung
BA=BE(gt)
=> Tam giác ABD=EBD(c.g.c)
=> AD=DE
và \(\widehat{BAD}=\widehat{DEB}=90^o\)
\(\Rightarrow\widehat{BAD}=\widehat{DEC}=90^o\)
b) Gọi giao điểm của BD và AE là O
Tam giác ABO=EBO(c.g.c) (tự cm)
=> \(\widehat{BOA}=\widehat{BOE}\)
Mà : \(\widehat{BOA}+\widehat{BOE}=180^o\)
\(\Rightarrow\widehat{BOA}=90^o\)
\(\Rightarrow AE\perp BD\left(đccm\right)\)
#H
a, Xét Δ BAD và Δ BED
Ta có : \(BA=BE\left(gt\right)\)
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABC}\))
BD là cạnh chung
=> Δ BAD = Δ BED (c.g.c)
b, Ta có : BA = BE (gt)
=> Δ ABE cân tại B
Mà BD là tia phân giác và cũng đồng thời là đường trung trực.
=> BD là đường trung trực của AE
c, ??