Có bao nhiêu giá trị của n để n+5/n là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+4/n-1 thuộc Z
3n-3+7/n-1 thuộc Z
3n-3/n-1 + 7/n-1 thuộc Z
3+7/n-1 thuộc Z
7/n-1 thuộc Z
n-1 thuộc ước của 7
n-1= -7;-1;1;7
n=-6;0;2;8
Đáp án B
Ta có : A = n - 5 n + 1 = n + 1 - 6 n + 1 = n + 1 n + 1 - 6 n + 1 = 1 - 6 n + 1
Ta có bảng sau
Vậy có 8 giá trị của n thỏa mãn là 0;−2;1;−3;2;−4;5;−7.
Ta có:
\(\frac{n+5}{n}=\frac{n}{n}+\frac{5}{n}=1+\frac{5}{n}\)
Để \(\frac{n+5}{n}\) có GTN thì \(1+\frac{5}{n}\) phải có GTN
\(\Rightarrow\frac{5}{n}\) phải có GTN
\(\Rightarrow5\) phải chia hết cho n
\(\Rightarrow n\inƯ\left(5\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm5\right\}\)
Mà n là STN nên \(n\in\left\{1;5\right\}\)
Vậy có tất cả 2 STN n để \(\frac{n+5}{n}\) có GTN
Ta có : \(\frac{n+5}{n}=\frac{n}{n}+\frac{5}{n}=1+\frac{5}{n}\)
Để \(1+\frac{5}{n}\in N\Leftrightarrow\frac{5}{n}N\in\)N
=> n thuộc ước của 5 là 1 ; 5
Vậy n = 1 ; 5
Tập hợp các giá trị tự nhiên của n để phân thức (n4-2n3+5)/(n-2) có các giá trị nguyên là bao nhiêu?
\(\left(n^4-2n^3+5\right)=n^3\left(n-2\right)+5\) chia hết cho n -2
=> 5 chia hết cho n -2
n-2 thuộc U(5) = {1;5}
=> n thuộc { 3;7}
Vậy tập hợp có 2 phần tử
để n+5/n là số nguyên
=>n+5 chia hết n
<=>(n+5)-5 chia hết cho n
=>5 chia hết cho n
=>n\(\in\){1,-1,5,-5}
vậy có 4 giá trị