Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+4/n-1 thuộc Z
3n-3+7/n-1 thuộc Z
3n-3/n-1 + 7/n-1 thuộc Z
3+7/n-1 thuộc Z
7/n-1 thuộc Z
n-1 thuộc ước của 7
n-1= -7;-1;1;7
n=-6;0;2;8
Đáp án B
Ta có : A = n - 5 n + 1 = n + 1 - 6 n + 1 = n + 1 n + 1 - 6 n + 1 = 1 - 6 n + 1
Ta có bảng sau
Vậy có 8 giá trị của n thỏa mãn là 0;−2;1;−3;2;−4;5;−7.
a) Để \(A\)không phải là phân số thì \(n-3=0\)
b) \(A\)có giá trị nguyên \(\Rightarrow6⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)
Để: \(\frac{2n-5}{n}\) có giá trị nguyên thì 2n - 5 \(⋮\)n
Vì 2n \(⋮\)n
nên 5 \(⋮\)n
=> n là ước của 5 mà n là số nguyên âm
=> n = - 1 hoặc n = - 5 thử lại cả 2 đều thỏa mãn
Vậy n = - 1; n = - 5
Đặt \(A=\frac{2n-5}{n}\)
\(\Rightarrow A=\frac{2n}{n}-\frac{5}{n}=2-\frac{5}{n}\)
Vì \(2\inℤ\)\(\Rightarrow\)Để A có giá trị nguyên thì \(5⋮n\)
\(\Rightarrow n\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Vậy \(n\in\left\{\pm1;\pm5\right\}\)
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
để n+5/n là số nguyên
=>n+5 chia hết n
<=>(n+5)-5 chia hết cho n
=>5 chia hết cho n
=>n\(\in\){1,-1,5,-5}
vậy có 4 giá trị