Cho p/s M=8n+193/4n+3
a) Tim số tự nhiên để M là số tự nhiên
b) Tìm số tự nhiên n để M là p/s tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho p/s M=8n+193/4n+3
a) Tim số tự nhiên để M là số tự nhiên
b) Tìm số tự nhiên n để M là p/s tối giản
a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)
+ \(4n+3=11\Leftrightarrow n=2\)
+ \(4n+3=187\Leftrightarrow n=46\)
+ \(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))
Vậy n=2, 46
b) A tối giản khi 187 và 4n+3 có ƯCLN =1
\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)
\(n\ne17m+12\left(m\inℕ\right)\)
c) \(n=156\Rightarrow A=\frac{17}{19}\)
\(n=165\Rightarrow A=\frac{89}{39}\)
\(n=167\Rightarrow A=\frac{139}{61}\)
Mình xin đính chính:
4n+3 không chia hết cho 187
=> 4n+3-187 không chia hết cho 187
=>4n-184 không chia hết cho 187
=>4(n-46) không chia hết cho 187
=> n-46 không chia hết cho 187
=> n-46 không = 187k(k là số nguyên)
=>n không=187k+46
Ta có
\(\frac{8n+193}{4n+3}\)=\(\frac{2\left(4n+3\right)+187}{4n+3}\)\(=2+\frac{187}{4n+3}\)
Để \(\frac{8n+193}{4n+3}\)tối giản thì \(\frac{187}{4n+3}\)tối giản
Nên để \(\frac{187}{4n+3}\)tối giản thì
4n+3 không chia hết cho 187
=> 4n+3-187 không chia hết cho 187
=> 4n+184 không chia hết cho 187
=>4(n+46) không chia hết cho 187
=> n+46 không chia hết cho 187
=> n+46=187k
=>n=187k-46
\(\frac{8n+193}{4n+3}=\frac{4n+4n+3+3+187}{4n+3}=\frac{\left(4n+3\right)+\left(4n+3\right)+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(2+\frac{187}{4n+3}\) là số nguyên <=> \(\frac{187}{4n+3}\) là số nguyên
=> 4n + 3 ∈ Ư ( 187 )