Tren mat phang toa do Oxy , cho duong thang y= ( 2m + 1)x -4m-1 va diem A ( -2;3).Tim m de khoang cach tu A den duong thang tren la lon nhat
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(M\in d\Rightarrow M\left(3m;4-4m\right)\)
Gọi \(N\left(x;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(x-1;y-1\right)\\\overrightarrow{AM}=\left(3m-1;3-4m\right)\end{matrix}\right.\)
Do A, M, N thẳng hàng nên ta có: \(\frac{x-1}{3m-1}=\frac{y-1}{3-4m}\)
\(\Leftrightarrow\left(x-1\right)\left(3-4m\right)=\left(y-1\right)\left(3m-1\right)\)
\(\Leftrightarrow3\left(x-1\right)-4m\left(x-1\right)=3m\left(y-1\right)-\left(y-1\right)\)
\(\Leftrightarrow m=\frac{3x+y-4}{4x+3y-7}\) (1)
Mặt khác \(\overrightarrow{AM}.\overrightarrow{AN}=4\Leftrightarrow\left(x-1\right)\left(3m-1\right)+\left(y-1\right)\left(3-4m\right)=4\)
\(\Leftrightarrow m=\frac{x-3y+6}{3x-4y+1}\) (2)
Từ (1), (2) ta có: \(\frac{3x+y-4}{4x+3y-7}=\frac{x-3y+6}{3x-4y+1}\)
\(\Leftrightarrow\left(3x+y-4\right)\left(3x-4y+1\right)-\left(x-3y+6\right)\left(4x+3y-7\right)=0\)
\(\Leftrightarrow5x^2+5y^2-26x-54y+38=0\)
\(\Leftrightarrow x^2+y^2-\frac{26}{5}x-\frac{54}{5}y+\frac{38}{5}=0\)
N nằm trên đường tròn tâm \(I\left(\frac{13}{5};\frac{27}{5}\right)\) bán kính \(R=\frac{2\sqrt{177}}{5}\)
Cách tính cơ bản là vậy, nhưng số hơi xấu nên có thể tính nhầm đoạn nào đó
Phương trình hoành độ giao điểm: \(x^2+2ax+4a=0\)
\(\Delta'=a^2-4a>0\Rightarrow\left[{}\begin{matrix}a< 0\\a>4\end{matrix}\right.\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2a\\x_1x_2=4a\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=3\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow4a^2-8a+8\left|a\right|=9\)
- Với \(a>0\) \(\Rightarrow4a^2=9\Rightarrow a^2=\frac{9}{4}\Rightarrow a=\frac{3}{2}< 4\left(l\right)\)
- Với \(a< 0\Rightarrow4a^2-16a-9=0\Rightarrow\left[{}\begin{matrix}a=-\frac{1}{2}\\a=\frac{9}{2}>0\left(l\right)\end{matrix}\right.\)
Vậy \(a=-\frac{1}{2}\)
a ) Phương trình hoành độ của đường thẳng (d) và parapo (P) là :
\(x^2=\left(k-1\right)x+2\)
\(\Leftrightarrow x^2-\left(k-1\right)x-2=0\)
\(\Delta=\left(k-1\right)^2+8=k^2-2k+9>0\)
Vì đen - ta lớn hơn 0 nên với mọi k thì (d) luôn cắt (P) tại 2 điểm phân biệt .
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=k-1\\x_1x_2=-2\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(k-1\right)^2+4\\y_1y_2=\left(x_1x_2\right)^2=4\end{matrix}\right.\)
Theo đề bài \(y_1+y_2=y_1y_2\)
\(\Rightarrow\left(k-1\right)^2+4=4\)
\(\Rightarrow k=1\)
\(d\left(M;\Delta\right)=\dfrac{\left|3.1-4.\left(-2\right)+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{15}{5}=3\)
mf (a) đi wa O(0;0;0) có VTPT :na=ud =(1,2,3) →pt :x+2y+3z=0
M ϵ d → M( t; -1+2t; -2+3t) d(M; (p))=2= \(\frac{5-t}{\sqrt{5}}\) tìm đk : t=5+2\(\sqrt{5}\) và t=5-2\(\sqrt{5}\) →tìm đk 2 tọa độ M
theo dg thẳng x=(4m+1)/(2m+1);y=-4m-1
Ta có Khoảng cách từ dg thẳng đến A là
căn((4m+1)/(2m+1)+2)^2+(-4m-1-3)^2)
tự khai ra giải pt