Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{cases}\left(SBC\right)\perp\left(ABCD\right)\\SH\perp CB\\\left(SBC\right)\cap\left(ABCD\right)=AB\end{cases}\Rightarrow SH\perp\left(ABCD\right)}\)
\(\overrightarrow{u}=\left(1;-1;2\right)\) ; A(1;1;1) \(\Rightarrow\left\{{}\begin{matrix}1+t\\1-t\\1+2t\end{matrix}\right.\)
Tâm mặt cầu cách đều A,B,C nên nằm trên giao của mp trung trực AB và AC, do đó nó nằm trên giao của 3 mặt: trung trực AB, trung trực AC và (Oyz)
\(\overrightarrow{BA}=\left(1;1;1\right)\) ; \(\overrightarrow{CA}=\left(4;4;-3\right)\)
Gọi D là trung điểm AB \(\Rightarrow D\left(\dfrac{3}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
Phương trình mp trung trực của AB:
\(1\left(x-\dfrac{3}{2}\right)+1\left(y-\dfrac{1}{2}\right)+1\left(z-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x+y+z-\dfrac{5}{2}=0\)
Gọi E là trung điểm AC \(\Rightarrow E\left(0;-1;\dfrac{5}{2}\right)\)
Pt mặt trung trực AC:
\(4x+4\left(y+1\right)-3\left(z-\dfrac{5}{2}\right)=0\)
\(\Leftrightarrow4x+4y-3z+\dfrac{23}{2}=0\)
(Oyz) có pt \(x=0\)
Do đó tọa độ tâm I mặt cầu là nghiệm: \(\left\{{}\begin{matrix}x+y+z-\dfrac{5}{2}=0\\4x+4y-3z+\dfrac{23}{2}=0\\x=0\end{matrix}\right.\) \(\Rightarrow I\left(0;-\dfrac{4}{7};\dfrac{43}{14}\right)\)
\(\Rightarrow\overrightarrow{IB}=\left(1;\dfrac{4}{7};-\dfrac{43}{14}\right)\Rightarrow R^2=IB^2=\dfrac{2109}{196}\)
Phương trình: \(x^2+\left(y+\dfrac{4}{7}\right)^2+\left(z-\dfrac{43}{14}\right)^2=\dfrac{2109}{196}\)
1.
Gọi \(M\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;2-y;-3-z\right)\\\overrightarrow{MB}=\left(-2-x;-y;2-z\right)\end{matrix}\right.\)
\(2\overrightarrow{MA}=\overrightarrow{MB}\Rightarrow\left\{{}\begin{matrix}2-2x=-2-x\\4-2y=-y\\-6-2z=2-z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\\z=-8\end{matrix}\right.\) \(\Rightarrow M\left(4;4;-8\right)\)
2.
Ta có:
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;2;-4\right)\\\overrightarrow{AC}=\left(0;1;c-2\right)\end{matrix}\right.\)
Tam giác ABC vuông tại A \(\Rightarrow AB\perp AC\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)
\(\Rightarrow-2.0+2.1-4\left(c-2\right)=0\)
\(\Rightarrow c=\dfrac{5}{2}\)
Vậy \(C\left(1;0;\dfrac{5}{2}\right)\)
Lời giải:
Mặt phẳng $(P)$ có \(\overrightarrow{n_P}=(2,-1,-2)\)
Mặt phẳng \((Oxy)\) có \(\overrightarrow{n_{Oxy}}=(0,0,1)\)
Do đó mà:
\(\cos \angle (P,Oxy)=\frac{|2.0+(-1).0+(-2).1|}{\sqrt{2^2+1^2+2^2}.\sqrt{0^2+0^2+1^2}}=\frac{2}{3}\)
Đáp án C
mf (a) đi wa O(0;0;0) có VTPT :na=ud =(1,2,3) →pt :x+2y+3z=0
M ϵ d → M( t; -1+2t; -2+3t) d(M; (p))=2= \(\frac{5-t}{\sqrt{5}}\) tìm đk : t=5+2\(\sqrt{5}\) và t=5-2\(\sqrt{5}\) →tìm đk 2 tọa độ M