chung minh rang voi a,b,c la cac so duong ,ta co (a+b+c)(1/a+1/b+1/c)>=9
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
ND
2
TN
20 tháng 2 2018
Cô si: \(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân theo vế:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)
"=" khi a=b=c
NT
0
16 tháng 3 2020
1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
Ta có (a+b+c)(1/a+1/b+1/c) = 1 + 1 + 1 + a/b + a/c + b/a + b/c + c/a + c/b
= 3 + (a/b + b/a) + (a/c + c/a) + (b/c + c/b) (1)
Vì a, b, c > 0 nên ta có (Áp dụng Côsi)
a/b + b/a \(\ge\) 2 (2)
a/c + c/a \(\ge\) 2 (3)
b/c + c/b \(\ge\) 2 (4)
Từ (1), (2), (3) và (4) suy ra
(a+b+c)(1/a+1/b+1/c) \(\ge\) 9
Dấu "=" xảy ra <=> a = b = c