Tính:
\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{100}\left(1+2+3+...+100\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
\(D=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{100^2}\right).\)
\(D=-\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\frac{4^2-1}{4^2}\cdot...\cdot\frac{100^2-1}{100^2}.\)
\(D=-\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot...\cdot\frac{98\cdot100}{99^2}\cdot\frac{99\cdot101}{100^2}=-\frac{1}{2}\cdot\frac{101}{100}=-\frac{101}{200}\)
a/ \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)=\frac{3}{2}\times\frac{4}{3}\times....\times\frac{101}{100}=\frac{101}{2}\)
b/ Tự chép đề nha\(B=\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)....\left(1-\frac{1}{100}\right)\left(1+\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{3}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{99}{100}\times\frac{101}{100}=\frac{1}{2}\times\frac{101}{100}=\frac{101}{200}\)
Đề a) (1+1/2) (1+1/3) (1+1/4)...(1+1/100)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)....\left(1+\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{4}{3}....\frac{101}{100}=\frac{3.4...101}{2.3...100}=\frac{101}{2}\)
Học tốt
A=[2+4+6+...+100][3/5:0,7+3[-2/7]]:[1/2+1/4+1/6+...+1/100]
A=[2+4+6+...+100][6/7+[-6/7]]:[1/2+1/4+1/6+...+1/100]
A=[2+4+6+...+100][0]:[1/2+14+1/6+...+1/100]
A=0
CHỈ MK CÁCH VIẾT PHÂN SỐ ĐI
a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)
\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)
\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)