Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)
\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)
\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)
a/ \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)=\frac{3}{2}\times\frac{4}{3}\times....\times\frac{101}{100}=\frac{101}{2}\)
b/ Tự chép đề nha\(B=\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)....\left(1-\frac{1}{100}\right)\left(1+\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{3}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{99}{100}\times\frac{101}{100}=\frac{1}{2}\times\frac{101}{100}=\frac{101}{200}\)
Đề a) (1+1/2) (1+1/3) (1+1/4)...(1+1/100)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)....\left(1+\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{4}{3}....\frac{101}{100}=\frac{3.4...101}{2.3...100}=\frac{101}{2}\)
Học tốt
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)
A=[2+4+6+...+100][3/5:0,7+3[-2/7]]:[1/2+1/4+1/6+...+1/100]
A=[2+4+6+...+100][6/7+[-6/7]]:[1/2+1/4+1/6+...+1/100]
A=[2+4+6+...+100][0]:[1/2+14+1/6+...+1/100]
A=0
CHỈ MK CÁCH VIẾT PHÂN SỐ ĐI
\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}....\frac{1-100^2}{100^2}\)
\(=\frac{\left(1-2\right)\left(1+2\right)}{2^2}.\frac{\left(1-3\right)\left(1+3\right)}{3^2}.\frac{\left(1-4\right)\left(1+4\right)}{4^2}...\frac{\left(1-100\right)\left(1+100\right)}{100^2}\)
\(=-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)
\(=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(=-\frac{101}{200}\)
Đề câu C sai nhé, sửa: ... < 1/2
\(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\\ 3C=1+\frac{1}{3}+...+\frac{1}{3^{98}}\\ 3C-C=1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{99}}\\ 2C=1-\frac{1}{3^{99}}\\ C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\left(đpcm\right)\)
Đề câu D sai nhé, sửa: ... > -1/2
\(D=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)< \left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)
Mặt khác \(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\\ =\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-99}{100}\\ =-\left(\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\right)\\ =\frac{-1}{100}\)
Mà \(\frac{1}{100}< \frac{1}{2}\Rightarrow\frac{-1}{100}>\frac{-1}{2}\)
Vậy \(D< \frac{-1}{2}\left(đpcm\right)\)