Cho tam giác ABC cân tại A có AH là đường cao, gọi E và F lần lượt là trung điểm của AB và AC.
a) Chứng minh: EF // BC.
b) Chứng minh tứ giác BEFC là hình thang cân.
c) Gọi I là giao điểm của AH và EF. Chứng minh tứ giác IFCH là hình thang vuông.
d) Gọi K là điểm đối xứng của H qua E. Chứng minh tứ giác AHBK là hình chữ nhật.
e) Gọi O là điểm đối xứng với B qua K. Chứng minh A là trung điểm của OC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
K là trung điểm của AC
Do đó: EK là đường trung bình của ΔABC
b: Xét tứ giác BEKC có KE//BC
nên BEKC là hình thang
mà \(\widehat{EBC}=\widehat{KCB}\)
nên BEKC là hình thang cân
a. Vì M,N là trung điểm AB,AC nen MN là đtb tg ABC
Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)
b. Vì MN là đtb nên MN//BC hay BMNC là hình thang
Mà \(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\) nên BMNC là ht cân
c. Vì AH là trung tuyến của tam giác ABC cân nên cũng là đg cao
Do đó \(AH\bot BC\)
Mà Q,M là trung điểm BH và AB nên QM là đtb
Do đó \(QM//AH;QM=\dfrac{1}{2}AH\) hay \(QM//HP\)
Mà \(MN//BC\) nên \(MP//QH\)
Do đó QMPH là hbh
Mà \(AH\bot BC\) nên \(\widehat{PHQ}=90^0\)
Vậy QMPH là hcn
a) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của AC(gt)
Do đó: EF là đường trung bình của ΔABC(ĐỊnh nghĩa đường trung bình của tam giác)
Suy ra: EF//BC
hay BEFC là hình thang có hai đáy là EF và BC và FE\(\perp\)AH(đpcm)
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
a)ta có : A=E=F=90 => AEHF hình chữ nhật
b)ta có: Am=AN, HM=MC =>ACNH hbh
Ta có AH//CN => AHE =CNH (đv) = FEH mà FC//NE => EFCN hìn thang cân
c)ta có OC, AM là trung tuyến của ∆ACH cắt nhau tại G => G là trọng tâm => AG =2/3 AM=2/3*AN/2=AN/3
=>AN=3AG
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: FE là đường trung bình
=>FE//CM và FE=CM
hay FEMC là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
còn những câu sau thì s ạ?