K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

25 tháng 4 2018

a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b)*b+1=cd 

<=> cb+db-cd+1-b^2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d.

14 tháng 8 2016

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

14 tháng 8 2016

cop

28 tháng 3 2018

Ta có : 

\(a+b=c+d\)

\(\Rightarrow\)\(a=-b+c+d\)

Thay \(a=-b+c+d\) vào \(ab+1=cd\) ta được : 

\(\left(-b+c+d\right)b+1=cd\)

\(\Leftrightarrow\)\(-b^2+bc+bd+1=cd\)

\(\Leftrightarrow\)\(\left(-b^2+bd\right)+\left(bc-cd\right)=-1\)

\(\Leftrightarrow\)\(-b\left(b-d\right)+c\left(b-d\right)=-1\)

\(\Leftrightarrow\)\(\left(c-b\right)\left(b-d\right)=-1\)

Vì \(a,b,c,d\inℤ\) nên có 2 trường hợp : 

Trường hợp 1 : 

\(\hept{\begin{cases}c-b=1\\b-d=-1\end{cases}\Leftrightarrow\hept{\begin{cases}c=b+1\\b+1=d\end{cases}\Leftrightarrow}\hept{\begin{cases}c=b+1\\c=d\end{cases}}}\)

\(\Rightarrow\)\(c=d\)

Trường hợp 2 : 

\(\hept{\begin{cases}c-b=-1\\b-d=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=c+1\\b=d+1\end{cases}}}\)

\(\Rightarrow\)\(c+1=d+1\)

\(\Rightarrow\)\(c=d\)

Vậy \(c=d\)

Chúc bạn học tốt ~ 

1 tháng 11 2019

Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)

\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)

Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)

                        \(ac-bd=\left(a+b\right)\left(b+c\right)\)

Từ 3 điều trên ta suy ra đpcm