Tính giá trị biểu thức
\(\left(\frac{1}{16}-1\right).\left(\frac{1}{25}-1\right).\left(\frac{1}{36}-1\right).....\left(\frac{1}{10000}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi bn mk bị nhầm
\(\frac{3.5}{4^2}.\frac{4.6}{5^2}.\frac{5.7}{6^2}...\frac{9.11}{10^2}\)
= \(\frac{3.4.5...9}{4.5.6...9.10}.\frac{5.6...9.10.11}{4.5.6...9.10}=\frac{3}{10}.\frac{11}{4}=\frac{33}{40}\)
\(\left(\frac{1}{16}-1\right)\left(\frac{1}{25}-1\right)\left(\frac{1}{36}-1\right)...\left(\frac{1}{100}-1\right)\)
= \(\frac{15}{16}.\frac{24}{25}.\frac{35}{36}...\frac{99}{100}\)
= \(\frac{3.5}{4^2}.\frac{4.6}{5^2}.\frac{5.7}{6^2}...\frac{9.11}{10^2}\)
= \(\frac{3.4.5...9.10}{4.5...9.10}.\frac{5.6.7..9.10.11}{4.5.6...9.10}=3.\frac{11}{4}=\frac{33}{4}\)
\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2013\cdot2015}\right)\)
\(=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{4056196}{2013\cdot2015}\)
\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}\)
\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}\)
\(=\frac{2014\cdot2}{1\cdot2015}\)
\(=\frac{4028}{2015}\)