K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2013\cdot2015}\right)\)

\(=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{4056196}{2013\cdot2015}\)

\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}\)

\(=\frac{2014\cdot2}{1\cdot2015}\)

\(=\frac{4028}{2015}\)

17 tháng 5 2017

=1/2.(1+1/1.3).(1+1/2.4).(1+1/3.5)...(1+1/2014.2016)

=1/2.(1+1/1-1/3).(1+1/3-1/5)...(1+1/2014-1/2016)

=1/2.1+(1/1-1/2016)

=1/2.2015/2016

=2015/4032

13 tháng 7 2017

sai roi

8 tháng 4 2016

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)

\(A=\frac{2.3.4...2015}{1.2.3...2014}.\frac{2.3.4...2015}{3.4.5...2016}\)

\(A=2015.\frac{1}{1008}\)

\(A=\frac{2015}{1008}\)

8 tháng 4 2016

Ta có :

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}............\frac{2015^2}{2014.2016}\)\(\frac{2.2}{1.3}.\frac{3.3}{2.4}...........\frac{2015.2015}{2014.2016}=\frac{2.2015}{2016}=\frac{2015}{1008}\)

k cho mình nha

2 tháng 5 2017

Ta có

=\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{8.10}\right)\)

=\(\frac{4}{3}.\frac{9}{8}....\frac{81}{80}\)

=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{9.9}{8.10}\)

=\(\frac{2.3....9}{1.2....8}.\frac{2.3....9}{3.4....10}\)

=\(9.\frac{2}{10}\)

=\(\frac{9}{5}\)

19 tháng 3 2017

Ta có công thức :

\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Áp dụng vào bài toán ta được :

\(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}..........\frac{2015^2}{2014.2016}\)

\(=\frac{\left(2.3.4....2015\right)\left(2.3.4....2015\right)}{\left(1.2.3...2014\right)\left(3.4.5.....2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

19 tháng 3 2017

=1(1/1*3*(1/2*4)*...*(1+1/2014*2016)

=1/2(2+2/1*3)+(2+2/2*4)*...(2+2/2014*2016)

=1/2(2+1/1-1/3)...(2+1/2014-1/2016)

=1/2*(1/1-1/2016)

=3023/4032

22 tháng 3 2018

\(Q=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

\(Q=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)...\left(\frac{99}{100}\right)\)

\(Q=\frac{1}{100}\)

\(P=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(P=\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)\left(\frac{3.5}{3.5}+\frac{1}{3.5}\right)...\left(\frac{99.101}{99.101}+\frac{1}{99.101}\right)\)

\(P=\left(\frac{4}{1.3}\right)\left(\frac{9}{2.4}\right)\left(\frac{16}{3.5}\right)...\left(\frac{10000}{99.101}\right)\)

\(P=\left(\frac{2^2}{1.3}\right)\left(\frac{3^2}{2.4}\right)\left(\frac{4^2}{3.5}\right)...\left(\frac{100^2}{99.101}\right)\)

Bạn tự tách ra rồi bạn sẽ ra kết quả như ở dưới

\(P=\frac{201}{100}\)