Cho 2 so x,y thỏa mãn x+2y= 3. cmr: 1/x+2/y> 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{x^3\left(2y-x\right)}+x\left(2y-x\right)-x\left(2y-x\right)+x^2+y^2\)
\(P\ge\frac{2}{x}-2xy+2x^2+y^2\)
\(P\ge\frac{1}{x}+\frac{1}{x}+x^2+\left(x-y\right)^2\ge3+\left(x-y\right)^2\ge3\)
Dấu "=" xảy ra khi \(x=y=1\)
Lời giải:
Với $x,y$ là các số thực dương, áp dụng BĐT Cauchy ta có:
\(x^2+y^2\geq 2xy\)
\(\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq \frac{1}{x^3(2y-x)}+2xy(1)\)
$2y>x$ nên $2y-x>0$. Tiếp tục áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x^3(2y-x)}+2xy=\frac{1}{x^3(2y-x)}+x(2y-x)+x^2\geq 3\sqrt[3]{\frac{1}{x^3(2y-x)}.x(2y-x).x^2}=3(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq 3\) (đpcm)
Dấu "=" xảy ra khi $x=y=1$
Ta có:
\(A=x\left(x^3-1\right)-y\left(y^3-1\right)=x^4-x-y^4+y\)
\(=\left(x^4-y^4\right)+\left(-x+y\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+y^2-1\right)=\left(x-y\right)\left[\left(x+y\right)^2-2xy-1\right]\)
\(=-2xy\left(x-y\right)\)
\(B=\left(y^3-1\right)\left(x^3-1\right)=x^3y^3-x^3-y^3+1\)
\(=x^3y^3+1-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3y^3+1-\left[\left(x+y\right)^2-3xy\right]\)
\(=xy\left(x^2y^2+3\right)\)
Từ đó ta có:
\(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\dfrac{x\left(x^3-1\right)-y\left(y^3-1\right)}{\left(y^3-1\right)\left(x^3-1\right)}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\dfrac{-2xy\left(x-y\right)}{xy\left(x^2y^2+3\right)}+\dfrac{2\left(x-y\right)}{x^2y^2+3}=-\dfrac{2\left(x-y\right)}{x^2y^2+3}+\dfrac{2\left(x-y\right)}{x^2y^2+3}=0\)
Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!
Đặt \(A=\frac{1}{x}+\frac{2}{y}\)
\(\Rightarrow\) \(3A=\left(\frac{1}{x}+\frac{2}{y}\right)\left(x+2y\right)\) (do \(x+2y=3\) )
nên \(3A=2\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
Khi đó, áp dụng bất đẳng thức \(AM-GM\) đối với bộ số không âm gồm \(\left(\frac{x}{y};\frac{y}{x}\right)\) , ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Do đó, \(3A\ge2.2+5=9\)
Hay nói cách khác, \(A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy, \(A_{min}=3\) \(\Leftrightarrow\) \(x=y=1\)
dùng cô si ( AM - GM ) thêm bớt nhanh hơn .
dự đoán điểm rơi x = y = 1
Gải : \(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\left(1\right).\)
\(\frac{2}{y}+2y\ge2\sqrt{\frac{2}{y}.2y}=4\left(2\right).\)
cống vế với vế của (1) và (2) ta được : \(\frac{1}{x}+\frac{2}{y}+3\ge6\) ( do x + 2y = 3 )
=> \(\frac{1}{x}+\frac{2}{y}\ge3\)dấu "=" xẩy ra khi x = y = 1
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Tôi không có kết quả