tìm số nguyên m để phân số \(\frac{m-2}{\left|m+5\right|}\)< hoặc = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)
\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)
\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.
\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)
(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)
\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}
\(M=\frac{a+5}{a-2}=\frac{\left(a-2\right)+5+2}{a-2}=\frac{\left(a-2\right)+7}{a-2}=\frac{7}{a-2}\)
Để M nguyên
\(\Leftrightarrow7⋮a-2\)
\(\Rightarrow a-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{3;1;9;-5\right\}\)
Vậy...........................
p/s : câu a,b,d quên cách làm r :(
Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN
Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho
Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)
=> \(m^2-4m+6\ge0\)luôn đúng
Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)
Khi đó
\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)
\(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)
\(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)
\(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)
\(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)
\(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
Để P là số nguyên
=> \(\frac{9}{2m-5}\)là số nguyên
=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)
=> \(m\in\left\{-2;1;2;3;4;7\right\}\)
Kết hợp với ĐK
=> \(m\in\left\{1;2;3;4;7\right\}\)
Vậy \(m\in\left\{1;2;3;4;7\right\}\)
M= \(\frac{x^2-5}{x^2-2}\)=\(\frac{x^2-2-3}{x^2-2}\)= 1 - \(\frac{3}{x^2-2}\)
Để M là số nguyên thì ( x2 - 2) phải thuộc Ư(3)={1;3;-1;-3}
Với x2 -2=1 => x2 = 3 ( loại vì x là số nguyên) ; Với x2 -2=3 => x2=5( loại vì x là số nguyên)
Với x2-2=-1 =>x=1 hoặc x=-1(nhận); Với x2 -2=-3 =>x2 =-1( vô lí)
Vậy x=-1 và x=1
Để M là số nguyên thì x bình-5 chia hết cho x bình-2
Ta có:
x bình-5 = x bình-2-3
Vậy:
(x bình-2)-3 sẽ chia hết cho x bình-2
Mà x bình-2 chia hết cho x bình-2 (là sẽ bằng ko?)
Nên -3 sẽ chia hết cho x bình-2
Ư(-3)=-3 ;3;1 ; -1
Suy ra:
x*2 -2 = 1 suy ra x= tập hợp rỗng ( ko tính đc)
x*2-2= -1 suy ra x= 1
x*2-2=3 suy ra x=tập hợp rỗng(ko tính được)
x*2-2=-3 suy ra x=tập hợp rỗng(ko tính được)
Vậy x=1
a) A = x2(m + 5) - x(m + 5)(x + 3/2) + (x - m)
A = mx2 + 5x2 - mx2 - 3/2mx - 5x2 - 15/2x + x - m
A = -3/2mx - m - 13/2x
b) Khi m = -1, ta có:
(-3/2).(-1).x - (-1) - 13/2x = 0
<=> 3/2x - 13/2x + 1 = 0
<=> 3/2x - 13/2x = 0 - 1
<=> 3/2x - 13/2x = -1
<=> 3x - 13x = -2
<=> -10x = -2
<=> x = -2/-10 = 1/5
Để cái trê<hoặc bawng 0 thì 2 số trên khác dấu.=>M-2<M+5
=>M-2<0
M+5>0
=>m<2,m>-5
=>2>M>-5=>M=(1,0,-1-2-3-4)