K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 8 2019

Lời giải:
Với $m^2+(m+1)^2>0$ ta thấy:

PT \(\Leftrightarrow \frac{m}{\sqrt{m^2+(m+1)^2}}\sin x+\frac{m+1}{\sqrt{m^2+(m+1)^2}}\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}(*)\)

\((\frac{m}{\sqrt{m^2+(m+1)^2}})^2+(\frac{m+1}{\sqrt{m^2+(m+1)^2}})^2=1\) nên tồn tại $a$ sao cho:

\(\sin a=\frac{m}{\sqrt{m^2+(m+1)^2}}; \cos a=\frac{m+1}{\sqrt{m^2+(m+1)^2}}\). Khi đó:

\((*)\Leftrightarrow \sin a\sin x+\cos a\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

\(\Leftrightarrow \cos (x-a)=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

Để PT có nghiệm thì \(\frac{-1}{\sqrt{m^2+(m+1)^2}}\in [-1;1]\Leftrightarrow m^2+(m+1)^2\geq 1\)

Đặt \(\frac{-1}{\sqrt{m^2+(m+1)^2}}=\cos b(1)\Rightarrow \cos (x-a)=\cos b\)

\(\Leftrightarrow x=a\pm b+2k\pi \) ($k_i$ nguyên)

PT có 2 nghiệm có dạng $x_1=a+b+2k_1\pi$ và $x_1=a-b+2k_2\pi$ (nếu $x_1,x_2$ cùng họ nghiệm thì $|x_1-x_2|=|2n\pi|\neq \frac{\pi}{2}$)

\(\Rightarrow |x_1-x_2|=|2b+2(k_1-k_2)\pi|\)

\(\Rightarrow \cos |x_1-x_2|=\cos |2b+2(k_1-k_2)\pi|=\cos 2b=\cos \frac{\pi}{2}=0\)

\(\Leftrightarrow 2\cos ^2b-1=0\Leftrightarrow \cos ^2b=\frac{1}{2}\). Kết hợp vs $(1)$ suy ra $m^2+(m+1)^2=2$

$\Rightarrow m=\frac{-1\pm \sqrt{3}}{2}$

Thử lại thấy thỏa mãn.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
Với $m^2+(m+1)^2>0$ ta thấy:

PT \(\Leftrightarrow \frac{m}{\sqrt{m^2+(m+1)^2}}\sin x+\frac{m+1}{\sqrt{m^2+(m+1)^2}}\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}(*)\)

\((\frac{m}{\sqrt{m^2+(m+1)^2}})^2+(\frac{m+1}{\sqrt{m^2+(m+1)^2}})^2=1\) nên tồn tại $a$ sao cho:

\(\sin a=\frac{m}{\sqrt{m^2+(m+1)^2}}; \cos a=\frac{m+1}{\sqrt{m^2+(m+1)^2}}\). Khi đó:

\((*)\Leftrightarrow \sin a\sin x+\cos a\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

\(\Leftrightarrow \cos (x-a)=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

Để PT có nghiệm thì \(\frac{-1}{\sqrt{m^2+(m+1)^2}}\in [-1;1]\Leftrightarrow m^2+(m+1)^2\geq 1\)

Đặt \(\frac{-1}{\sqrt{m^2+(m+1)^2}}=\cos b(1)\Rightarrow \cos (x-a)=\cos b\)

\(\Leftrightarrow x=a\pm b+2k\pi \) ($k_i$ nguyên)

PT có 2 nghiệm có dạng $x_1=a+b+2k_1\pi$ và $x_1=a-b+2k_2\pi$ (nếu $x_1,x_2$ cùng họ nghiệm thì $|x_1-x_2|=|2n\pi|\neq \frac{\pi}{2}$)

\(\Rightarrow |x_1-x_2|=|2b+2(k_1-k_2)\pi|\)

\(\Rightarrow \cos |x_1-x_2|=\cos |2b+2(k_1-k_2)\pi|=\cos 2b=\cos \frac{\pi}{2}=0\)

\(\Leftrightarrow 2\cos ^2b-1=0\Leftrightarrow \cos ^2b=\frac{1}{2}\). Kết hợp vs $(1)$ suy ra $m^2+(m+1)^2=2$

$\Rightarrow m=\frac{-1\pm \sqrt{3}}{2}$

Thử lại thấy thỏa mãn.

27 tháng 9 2020

Câu 1 với câu 2 sai đề, sin và cos nằm trong [-1;1], mà căn 2 với căn 3 lớn hơn 1 rồi

3/ \(\sin x=\cos2x=\sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2x+k2\pi\\x=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\frac{2}{3}\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

4/ \(\Leftrightarrow\cos^2x-2\sin x\cos x=0\)

Xét \(\cos x=0\) là nghiệm của pt \(\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(\cos x\ne0\Rightarrow1-2\tan x=0\Leftrightarrow\tan x=\frac{1}{2}\Rightarrow x=...\)

5/ \(\Leftrightarrow\sin\left(2x+1\right)=-\cos\left(3x-1\right)=\cos\left(\pi-3x+1\right)=\sin\left(\frac{\pi}{2}-\pi+3x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\frac{\pi}{2}-\pi+3x-1\\2x+1=\pi-\frac{\pi}{2}+\pi-3x+1\end{matrix}\right.\Leftrightarrow....\)

6/ \(\Leftrightarrow\cos\left(\pi\left(x-\frac{1}{3}\right)\right)=\frac{1}{2}\Leftrightarrow\pi\left(x-\frac{1}{3}\right)=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{1}{3}+2k\Rightarrow x=\frac{2}{3}+2k\left(1\right)\\x-\frac{1}{3}=-\frac{1}{3}+2k\Rightarrow x=2k\left(2\right)\end{matrix}\right.\)

\(\left(1\right):-\pi< x< \pi\Rightarrow-\pi< \frac{2}{3}+2k< \pi\) (Ủa đề bài sai hay sao ý nhỉ?)

7/ \(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x+\frac{\pi}{3}\\5x+\frac{\pi}{3}=\pi-\frac{\pi}{2}+2x-\frac{\pi}{3}\end{matrix}\right.\Leftrightarrow...\)

Thui, để đây bao giờ...hết lười thì làm tiếp :(

27 tháng 9 2020

7)

\(sin\left(5x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x-\frac{\pi}{3}+k2\pi\\5x+\frac{\pi}{3}=\pi-\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{42}+k\frac{2\pi}{7}\\x=\frac{\pi}{6}+k\frac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

Do:\(0< x< \pi\)

\(Với:x=\frac{-\pi}{42}+k\frac{2\pi}{7}\left(k\in Z\right)\Rightarrow khôngtìmđượck\)

\(Với:x=\frac{\pi}{6}+k\frac{2\pi}{3}\left(k\in Z\right)\Leftrightarrow\frac{1}{4}< k< \frac{5}{4}\Rightarrow k=\left\{0;1\right\}\Rightarrow\left[{}\begin{matrix}k=0\Rightarrow x=\frac{\pi}{6}\\k=1\Rightarrow x=\frac{5\pi}{6}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=\frac{\pi}{6};x=\frac{5\pi}{6}\)

NV
22 tháng 12 2020

\(\Leftrightarrow\left(cosx+1\right)\left(4cos2x-m.cosx\right)=m\left(1-cosx\right)\left(1+cosx\right)\)

\(\Leftrightarrow4cos2x-m.cosx=m\left(1-cosx\right)\)

\(\Leftrightarrow4cos2x=m\)

\(\Rightarrow cos2x=\dfrac{m}{4}\)

Pt có đúng 2 nghiệm thuộc đoạn đã cho khi và chỉ khi:

\(-1< \dfrac{m}{4}\le-\dfrac{1}{2}\Leftrightarrow-4< m\le-2\)

Có 2 giá trị nguyên của m thỏa mãn

NV
14 tháng 9 2020

1.

\(\Leftrightarrow2x-\frac{\pi}{4}=x+\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{7\pi}{12}+k\pi\)

\(-\pi< \frac{7\pi}{12}+k\pi< \pi\Rightarrow-\frac{19}{12}< k< \frac{5}{12}\Rightarrow k=\left\{-1;0\right\}\) có 2 nghiệm

\(x=\left\{-\frac{5\pi}{12};\frac{7\pi}{12}\right\}\)

2.

\(\Leftrightarrow3x-\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{5\pi}{18}+\frac{k\pi}{3}\)

Nghiệm âm lớn nhất là \(x=-\frac{\pi}{18}\) khi \(k=-1\)

3.

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3\pi}{4}=\frac{\pi}{3}+k2\pi\\x-\frac{3\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13\pi}{12}+k2\pi\\x=\frac{17\pi}{12}+k2\pi\end{matrix}\right.\)

Nghiệm âm lớn nhất \(x=-\frac{7\pi}{12}\) ; nghiệm dương nhỏ nhất \(x=\frac{13\pi}{12}\)

Tổng nghiệm: \(\frac{\pi}{2}\)

Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\) Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).Câu 4: Giá trị...
Đọc tiếp

Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\) 

Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).

Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).

Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?

Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.

Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là? 

Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?

Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?

Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?

Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?

3
1 tháng 8 2021

1.

\(cos2x-3cosx+2=0\)

\(\Leftrightarrow2cos^2x-3cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn

\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)

\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)

1 tháng 8 2021

2.

\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)

Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)

Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)

TH1: \(m=2\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)

\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán

TH2: \(m=3\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)

\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán

TH3: \(m=1\)

\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

Vậy \(m=2;m=3\)