K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

ai trả lời nhanh cái h mình cần gấp làm xong mình k nha><

4 tháng 2 2016

minh moi hoc lop 6 nen k bit lam

4 tháng 2 2016

x=-20000000000000000000000002 thu ma coi

6 tháng 2 2017

\(A=\frac{2002\left(x-1\right)+2003}{2003\left(x-1\right)}=\frac{2002}{2003}+\frac{1}{x-1}\)

=> x-1 phải là sô nguyên dương nhỏ nhất => x-1=1=> x=2

17 tháng 5 2017

\(A=\)\(\frac{2002\left(x-1\right)+2003}{2003\left(x-1\right)}\)\(=\)\(\frac{2002}{2003}\)\(+\)\(\frac{1}{x-1}\)

=> x-1 phải là số nguyên dương nhỏ nhất 

=>x-1=1

=>x=2

17 tháng 5 2017

GTNN mà bạn

21 tháng 11 2019

\(A=\frac{2002x+1}{2003x-2003}\)

\(A=\frac{2002x+1}{2003.\left(x-1\right)}\)

\(A=\frac{2002.\left(x-1\right)+2003}{2003.\left(x-1\right)}\)

\(A=\frac{2002}{2003}+\frac{1}{x-1}.\)

Để A đạt GTLN \(\Leftrightarrow\frac{1}{x-1}\) đạt GTLN.

Nếu \(x>1\) thì:

\(x-1>0\)

\(\Rightarrow\frac{1}{x-1}>0.\)

Nếu \(x< 1\) thì:

\(x-1< 0\)

\(\Rightarrow\frac{1}{x-1}< 0.\)

Xét \(x>1\) ta có:

\(\frac{1}{x-1}\) đạt GTLN.

\(\Rightarrow x-1\) là số nguyên dương nhỏ nhất.

\(\Rightarrow x-1=1\)

\(\Rightarrow x=1+1\)

\(\Rightarrow x=2\left(TM\right).\)

Vậy \(MAX_A=1\frac{2002}{2003}\) khi \(x=2.\)

Chúc bạn học tốt!

10 tháng 3 2023

Biểu thức đâu vậy bạn?

9 tháng 11 2018

A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất 

=> x - 1 lớn nhất 

=> x là số dương vô cùng đề sai nhá

22 tháng 2 2018

Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0

\(\Rightarrow4-x=1\rightarrow x=3\)

thay vào ta đc A=3

B3

\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)

Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )

Vậy gtln của 3/4-x là 3 thay vào ta đc b=4

Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)

22 tháng 2 2018

B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)

VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}

\(\Rightarrow\)x={0;-1;23}