CÂU 11: Cho tứ giác ABCD, và AC IBD ; Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Khi đó MNPQ là hình gì? a) c/m MNPQ là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của DA
P là trung điểm của DC
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MNPQ là hbh
a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)
\(\widehat{IBA}=\widehat{ICD}\)
mà \(\widehat{IDC}=\widehat{ICD}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
hay ΔIAB cân tại I
b: Xét ΔIBD và ΔIAC có
IB=IA
\(\widehat{BID}\) chung
ID=IC
Do đó: ΔIBD=ΔIAC
a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)
\(\widehat{IBA}=\widehat{ICD}\)
mà \(\widehat{IDC}=\widehat{ICD}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
hay ΔIAB cân tại I
b: Xét ΔIBD và ΔIAC có
IB=IA
\(\widehat{BID}\) chung
ID=IC
Do đó: ΔIBD=ΔIAC
Xét ΔABC có
M là trung điểm của BA
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trungb bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành