Bài 3: (1, 5 điểm)
Một số sách nếu xếp thành từng bó 10 cuốn, 12 cuốn hoặc 15 cuốn thì đều thừa 2 cuốn. Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sách cần tìm là a ( 100≤≤ a ≤≤ 150)
Theo đề bài, ta có: a⋮⋮ 10 ; a⋮⋮ 12; a ⋮⋮ 15
⇒⇒ a ∈∈ BC( 10; 12; 15)
Ta có: 10=2.5 ; 12=22 . 3 ; 15=3. 5
BCNN( 10; 12; 15) = 22. 3. 5= 60
BC (10; 12; 15) = B(60) = {0;60;120;180;...}{0;60;120;180;...}
Vì 100≤≤ a ≤≤ 150 nên a = 120
Vậy : số sách đó là 120 quyển
từ đề bài thì số sách cùng chia hết cho 10;12 và 15 và trong khoảng 100-150
Vậy số sách là 120
gọi số sách là a(a thuộc N*,100<=a<=150),ta có
a \(⋮\)10,a\(⋮\)12,a\(⋮\)15 nên a là BC(10,12,15)
10=2.5
12=22.3
15=3.5
=>BCNN(10,12,15)=22.3.5=60
=>BC(10,12,15)={0,60,120,180,...}
Mà 100<=a<=150 nên a=120
(<= là\(\le\))
Gọi số sách là a
\(\left(a\inℕ\right)\)
Vì khi xếp thành từng bó 12 cuốn, 15 cuốn, 18 cuốn đều thừa 5 cuốn nên a - 5 \(⋮12,15,18\)
\(\Rightarrow a-15⋮BCNN\left(12,15,18\right)=180\)
Mà : \(200\le a\le400\)nên \(185\le a-15\le385\Rightarrow a-15=360\Rightarrow a=375\)
Vậy...
Đặt a là số sách đó
Ta có: \(a⋮10;12;15\Rightarrow a\in BC\left(10;12;15\right)\)
Mà \(100< a< 150\)
\(\Rightarrow a=120\)
Vậy số sách đó là 120
gọi a là số sách
a \(⋮\)10; \(⋮\)12; \(⋮\)15
=>a \(\in\)BC ( 10 ; 12 ; 15 ) = B ( 30 ) = { 0 ; 30 ; 60 ; 90 ; 120 ; 150 ; ... }
mà 150 > a > 100
nên a = 120
vậy số sách là 120
gọi số cuốn sách đó là x (cuốn) đk x thuộc N 100< x <150
Vì số sách đó xếp thành từng bó 10 cuốn,12 cuốn,15 cuốn
từ đó suy ra x chia hết cho 10.12,15
Vậy x là bội chung của 10,12,15
BC(10,12,15)={0;60;120;180;............}
mà 100<x<150 Vậy chỉ có số 120 thì thỏa mãn
Vậy số sách đó là 120 cuốn
2 Gọi khối học sinh đó là x(HS) đk x thuộc N, x<400
Vì khối học sinh đó xếp hàng 2,3,4,5,6 đều thừa một em nên suy ra x-1 chia hết cho 2,3,4,5,6
mà khối học sinh đó xếp hàng 7 thì vừa đủ từ đó suy ra số học sinh đó chia hết cho 7
ta có x-1 là bội chung của 2,3,4,5,6
BC(2,3,4,5,6)={0;60;120;180;240;300;360;420;..................}
Vậy x thuộc {1;61;121;181;241;301;361}
Mà x chia hết cho 7 suy ra số 301 là thỏa mãn
Vậy số học sinh đó là 301
gọi số cuốn sách đó là x (cuốn) đk x thuộc N 100< x <150
Vì số sách đó xếp thành từng bó 10 cuốn,12 cuốn,15 cuốn
từ đó suy ra x chia hết cho 10.12,15
Vậy x là bội chung của 10,12,15
BC(10,12,15)={0;60;120;180;............}
mà 100<x<150 Vậy chỉ có số 120 thì thỏa mãn
Vậy số sách đó là 120 cuốn
2 Gọi khối học sinh đó là x(HS) đk x thuộc N, x<400
Vì khối học sinh đó xếp hàng 2,3,4,5,6 đều thừa một em nên suy ra x-1 chia hết cho 2,3,4,5,6
mà khối học sinh đó xếp hàng 7 thì vừa đủ từ đó suy ra số học sinh đó chia hết cho 7
ta có x-1 là bội chung của 2,3,4,5,6
BC(2,3,4,5,6)={0;60;120;180;240;300;360;420;..................}
Vậy x thuộc {1;61;121;181;241;301;361}
Mà x chia hết cho 7 suy ra số 301 là thỏa mãn
Vậy số học sinh đó là 301
Gọi số sách trên giá là x
Theo đề, ta có: \(x\in BC\left(10;12;15\right)\)
mà 100<=x<=150
nên x=120
GỌi số sách là x>0 thì \(x-2\in BC\left(10,12,15\right)=B\left(60\right)=\left\{0;60;120;180;...\right\}\)
\(\Leftrightarrow x\in\left\{2;62;122;182;...\right\}\)
Mà \(100< x< 150\Leftrightarrow x=122\)
Vậy số sách có thể là 122