Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sách cần tìm là a ( 100≤≤ a ≤≤ 150)
Theo đề bài, ta có: a⋮⋮ 10 ; a⋮⋮ 12; a ⋮⋮ 15
⇒⇒ a ∈∈ BC( 10; 12; 15)
Ta có: 10=2.5 ; 12=22 . 3 ; 15=3. 5
BCNN( 10; 12; 15) = 22. 3. 5= 60
BC (10; 12; 15) = B(60) = {0;60;120;180;...}{0;60;120;180;...}
Vì 100≤≤ a ≤≤ 150 nên a = 120
Vậy : số sách đó là 120 quyển
Gọi số sách là a
\(\left(a\inℕ\right)\)
Vì khi xếp thành từng bó 12 cuốn, 15 cuốn, 18 cuốn đều thừa 5 cuốn nên a - 5 \(⋮12,15,18\)
\(\Rightarrow a-15⋮BCNN\left(12,15,18\right)=180\)
Mà : \(200\le a\le400\)nên \(185\le a-15\le385\Rightarrow a-15=360\Rightarrow a=375\)
Vậy...
Đặt a là số sách đó
Ta có: \(a⋮10;12;15\Rightarrow a\in BC\left(10;12;15\right)\)
Mà \(100< a< 150\)
\(\Rightarrow a=120\)
Vậy số sách đó là 120
gọi a là số sách
a \(⋮\)10; \(⋮\)12; \(⋮\)15
=>a \(\in\)BC ( 10 ; 12 ; 15 ) = B ( 30 ) = { 0 ; 30 ; 60 ; 90 ; 120 ; 150 ; ... }
mà 150 > a > 100
nên a = 120
vậy số sách là 120
gọi số cuốn sách đó là x (cuốn) đk x thuộc N 100< x <150
Vì số sách đó xếp thành từng bó 10 cuốn,12 cuốn,15 cuốn
từ đó suy ra x chia hết cho 10.12,15
Vậy x là bội chung của 10,12,15
BC(10,12,15)={0;60;120;180;............}
mà 100<x<150 Vậy chỉ có số 120 thì thỏa mãn
Vậy số sách đó là 120 cuốn
2 Gọi khối học sinh đó là x(HS) đk x thuộc N, x<400
Vì khối học sinh đó xếp hàng 2,3,4,5,6 đều thừa một em nên suy ra x-1 chia hết cho 2,3,4,5,6
mà khối học sinh đó xếp hàng 7 thì vừa đủ từ đó suy ra số học sinh đó chia hết cho 7
ta có x-1 là bội chung của 2,3,4,5,6
BC(2,3,4,5,6)={0;60;120;180;240;300;360;420;..................}
Vậy x thuộc {1;61;121;181;241;301;361}
Mà x chia hết cho 7 suy ra số 301 là thỏa mãn
Vậy số học sinh đó là 301
gọi số cuốn sách đó là x (cuốn) đk x thuộc N 100< x <150
Vì số sách đó xếp thành từng bó 10 cuốn,12 cuốn,15 cuốn
từ đó suy ra x chia hết cho 10.12,15
Vậy x là bội chung của 10,12,15
BC(10,12,15)={0;60;120;180;............}
mà 100<x<150 Vậy chỉ có số 120 thì thỏa mãn
Vậy số sách đó là 120 cuốn
2 Gọi khối học sinh đó là x(HS) đk x thuộc N, x<400
Vì khối học sinh đó xếp hàng 2,3,4,5,6 đều thừa một em nên suy ra x-1 chia hết cho 2,3,4,5,6
mà khối học sinh đó xếp hàng 7 thì vừa đủ từ đó suy ra số học sinh đó chia hết cho 7
ta có x-1 là bội chung của 2,3,4,5,6
BC(2,3,4,5,6)={0;60;120;180;240;300;360;420;..................}
Vậy x thuộc {1;61;121;181;241;301;361}
Mà x chia hết cho 7 suy ra số 301 là thỏa mãn
Vậy số học sinh đó là 301
Gọi số sách trên giá là x
Theo đề, ta có: \(x\in BC\left(10;12;15\right)\)
mà 100<=x<=150
nên x=120
GỌi số sách là x>0 thì \(x-2\in BC\left(10,12,15\right)=B\left(60\right)=\left\{0;60;120;180;...\right\}\)
\(\Leftrightarrow x\in\left\{2;62;122;182;...\right\}\)
Mà \(100< x< 150\Leftrightarrow x=122\)
Vậy số sách có thể là 122