K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

#TK:

giả sử căn 15 không phải là số vô tỉ => căn 15 là số hữu tỉ=> căn 15 =a/b (với a, b là hai số nguyên tố cùng nhau) (vì căn 15 là số hữu tỉ nên có thể viết dưới dạng a/b) => a^2/b^2= 15=> a^2 =15b^2vì a, b là hai so nguyen to cung nhau nên để a^2=15b^2 thì a^2 phải chia het cho 15mà 15 la so nguyen tố => a chia het cho 15 => a có dạng a=15kTa lại có : a^2=15b^2 => 225k^2 = 15b^2 => b^2=15k^2 tương tự ta => b chia hết cho 15ta có a và b đều chia het cho 15 trái với giả thiết a, b la hai số nguyen to cung nhau => ta có đpcm 

27 tháng 2 2021

Căn 15 là số vô tỉ mà bạn

NV
6 tháng 10 2021

Ta có:

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)

\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

Từ điều kiện đề bài suy ra $zx+zy=xy$

Khi đó:

$x^2+y^2+z^2=(x+y)^2-2xy+z^2=(x+y)^2+z^2-2(zx+zy)=(x+y)^2+z^2-2z(x+y)=(x+y-z)^2$

$\Rightarrow \sqrt{x^2+y^2+z^2}=|x+y-z|$

Vì $x,y,z$ là các số hữu tỉ nên $\sqrt{x^2+y^2+z^2}=|x+y-z|$ là số hữu tỉ (đpcm)

P/s: Bạn chú ý lần sau gõ đề bằng công thức toán.