K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

Ta có : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

\(\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2.\dfrac{c+b-a}{abc}\)

\(\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2\left(do-a\text{=}b+c\right)\)

\(\Rightarrow\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\text{=}\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}\)

\(\text{=}\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\)

Do \(a,b,c\) là các số hữu tỉ khác 0 nên

\(\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) là một số hữu tỉ

\(\Rightarrow dpcm\)

19 tháng 2 2023

Ta có : 

 P = \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2ac}+\dfrac{1}{2ab}-\dfrac{1}{2bc}}\)

\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2abc}\left(b+c-a\right)}\)

\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) (do a = b + c) 

=> P là số hữu tỉ với a,b,c \(\ne0\)

 P = 

 (do a = b + c) 

=> P là số hữu tỉ với a,b,c 

23 tháng 6 2019

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\left(\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2}{bc}}=\sqrt{\frac{1}{a^2}+\left(\frac{b+c}{bc}\right)^2-\frac{2}{bc}.}\)

\(=\sqrt{\frac{1}{a^2}+\frac{a^2}{b^2c^2}-\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}-\frac{a}{bc}\right)^2}\)\(=\left|\frac{1}{a}-\frac{a}{bc}\right|\)

Do a,b,c là các số hữu tỉ => đpcm

23 tháng 6 2019

Ta có 

\(\frac{1}{a^2\:}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b\:}-\frac{1}{c}\right)^2\)2.    + \(2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)\(2.\frac{c+b-a}{abc}\)\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(Vì a=b+c)

Từ đó suy ra 

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\)\(=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)Vì a,b,c là số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)là một số hữu tỉ

=> đpcm

27 tháng 9 2021

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

30 tháng 6 2017

Ta có:

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(=\frac{\left(b+c\right)^2b^2+\left(b+c\right)^2c^2+b^2c^2}{b^2c^2\left(b+c\right)^2}\)

\(=\frac{b^4+2b^3c+3b^2c^2+2bc^3+c^4}{b^2c^2\left(b+c\right)^2}\)

\(=\frac{\left(b^4+2b^2c^2+c^4\right)+2bc\left(b^2+c^2\right)+b^2c^2}{b^2c^2\left(b+c\right)^2}\)

\(=\frac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}}=\frac{b^2+bc+c^2}{bc\left(b+c\right)}\)

Vì a, b, c là các số hữu tỷ nên \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là số hữu tỷ

30 tháng 6 2017

cảm ơn ban alibaba nguyễn nhiều

lên mạng chép

21 tháng 2 2019

Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath

27 tháng 6 2016

Ta có: 

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\frac{c+b-a}{abc}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(vì a = b + c)

Suy ra: 

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)

Do a, b, c là các số hữu tỉ khác 0 nên \(\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)là một số hữu tỉ.

(Chúc bạn làm bài tốt và nhớ click cho mình với nhá!)

27 tháng 6 2016

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) có \(a=b+c\Rightarrow A=\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{b^2c^2+c^2\left(b+c\right)^2+b^2\left(b+c\right)^2}{\left(b+c\right)^2b^2c^2}\)
Ta có \(b^2c^2+c^2\left(b+c\right)^2+b^2\left(b+c\right)^2=b^2c^2+\left(b+c\right)^2\left(b^2+c^2\right)\)
        =\(b^2c^2+\left(b^2+c^2+2bc\right)\left(b^2+c^2\right)=b^2c^2+\left(b^2+c^2\right)^2+2bc\left(b^2+c^2\right)\)
        =\(\left(bc+\left(b^2+c^2\right)\right)^2\)
Vậy \(A=\frac{\left(bc+\left(b^2+c^2\right)\right)^2}{\left(b+c\right)^2b^2c^2}\Rightarrow\sqrt{A}=\frac{bc+b^2+c^2}{\left|\left(b+c\right)bc\right|}\)
Do \(b,c\)là các số chính phương nên \(\sqrt{A}\)chính phương suy ra điều phải chứng minh.

9 tháng 11 2021

Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\Leftrightarrow x+y+z=0\)

\(\Leftrightarrow A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\\ \Leftrightarrow A=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)}\\ \Leftrightarrow A=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2\left(x+y+z\right)}{xyz}}\\ \Leftrightarrow A=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2\cdot0}{xyz}}\\ \Leftrightarrow A=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
$a+b+c=abc$

$\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:

$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.

Ta có đpcm.