K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

Thi tự làm đi ạ

17 tháng 12 2021

a: \(=10\sqrt{3}-12\sqrt{3}+3\sqrt{3}=\sqrt{3}\)

2 tháng 9 2016

Vì \(3x^4\ge0;4x^2\ge0\)

=> giá trị nhỏ nhất là -2

Gía trị nhỏ nhất là:

-2

Với điều kiện : x=0

3:

độ dài cạnh là \(\sqrt{\dfrac{54}{6}}=\sqrt{9}=3\left(m\right)\)

V=3^3=27m3

19 tháng 3 2023

em chưa học đến cái này=)

 

1: \(=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x\cdot2y=4xy\)

2: \(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3=2y\left(3x^2+y^2\right)\)

3: \(=x^3+3x^2y+3xy^2+y^3+x^3-3x^2y+3xy^2-y^3\)

\(=2x^3+6xy^2=2x\left(x^2+3y^2\right)\)

4: \(=\left(7-4x+5\right)\left(7+4x-5\right)=\left(12-4x\right)\left(4x+2\right)\)

\(=8\left(3-x\right)\left(2x+1\right)\)

18 tháng 10 2021

2\(\sqrt{x}\)thì làm được bạn nhé

14 tháng 5 2019

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

            .....................

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

Đặt \(B=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

           \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

             \(=\frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

14 tháng 5 2019

\(\text{Ta có: }n^2>n^2-1=\left(n-1\right)\left(n+1\right)\)

\(\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}\)

Vậy .............