K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2015

Hướng dẫn giải:

Ta giải bài toán bằng cách đi ngược từ dưới lên. Vì tổng số kẹo là 25 nên nếu cuối cùng một người bốc được số lẻ viên kẹo sẽ thua, do người kia sẽ bốc được một số chẵn viên kẹo.

Ta ký hiệu mỗi trạng thái đến lượt An hay Bình đi bằng hai tham số (CL, k), trong đó CL là tính chẵn lẻ của số kẹo mà người chơi đang có, k là số kẹo còn lại trên bàn. Ta viết f(CL, k) = 1 nếu người đi có chiến thuật thắng từ trạng thái này. Trong trường hợp ngược lại f(CL, k) = 0. Mục đích của chúng ta là cần tính F(C, 25). Nếu giá trị này bằng 1 thì An thắng, ngược lại nếu giá trị này bằng 0 thì Bình thắng.

Ví dụ f(C, 1) = 0 vì người đi đang có số chẵn viên kẹo và bắt buộc phải bốc viên kẹo cuối cùng, kết thúc cuộc chơi. f(C, 2) = 1 vì người đi đang có số chẵn viên kẹo và có thể bốc 2 viên kẹo cuối cùng để giành chiến thắng. Cũng như vậy f(C, 3) = 1 (bốc 2). Tương tự như thế thì f(L, 1) = 1 (bốc 1), F(L, 2) = 1 (bốc 1), F(L, 3) = 1 (bốc 3).

Để tính f(C, 4) ta để ý rằng lúc này đối thủ đang có số lẻ viên kẹo. Nếu ta bốc 1, 2 hoặc 3 viên thì sẽ đưa đối thủ đến các trạng thái (L, 3), (L, 2), (L, 1) tương ứng, và đều là các trạng thái thắng của đối thủ. Suy ra f(C, 4) = 0. Với f(L, 4) ta bốc 3 viên, đưa đối thủ vào trạng thái thua (C, 1) và giành chiến thắng.

Tiếp tục, để tính f(C, 5) ta để ý rằng lúc này đối thủ đang có số chẵn viên kẹo. Do đó ta bốc 1 viên và đưa đối thủ vào trạng thái (C, 4) là trạng thái thua, như vậy f(C,5) = 1. Ngược lại từ (L, 5) ta chỉ có thể đưa về (L, 4), (L, 3), (L, 2) là các trạng thái thắng, suy ra f(L, 5) = 0.

Nói tóm lại, một trạng thái là thua nếu mọi cách đi đều đưa về trạng tháng thắng (cho đối thủ), một trạng thái là thắng nếu có một cách đi đưa về trạng thái thua (cho đối thủ). Bằng lý luận này, ta lập được bảng giá trị sau.

 123456789
C011011110
L111101101
 101112131415161718
C110111101
L111011011
 19202122232425  
C1011110  
L1101101  

Như vậy f(C, 25) = 0, tức là Bình có chiến thuật thắng.

(Đây là bài toán khá khó trong lý thuyết thuật toán và trò chơi).

28 tháng 3 2015

Ta giải bài toán bằng cách đi ngược từ dưới lên. Vì tổng số kẹo là 25 nên nếu cuối cùng một người bốc được số lẻ viên kẹo sẽ thua, do người kia sẽ bốc được một số chẵn viên kẹo.

Ta ký hiệu mỗi trạng thái đến lượt An hay Bình đi bằng hai tham số (CL, k), trong đó CL là tính chẵn lẻ của số kẹo mà người chơi đang có, k là số kẹo còn lại trên bàn. Ta viết f(CL, k) = 1 nếu người đi có chiến thuật thắng từ trạng thái này. Trong trường hợp ngược lại f(CL, k) = 0. Mục đích của chúng ta là cần tính F(C, 25). Nếu giá trị này bằng 1 thì An thắng, ngược lại nếu giá trị này bằng 0 thì Bình thắng.

Ví dụ f(C, 1) = 0 vì người đi đang có số chẵn viên kẹo và bắt buộc phải bốc viên kẹo cuối cùng, kết thúc cuộc chơi. f(C, 2) = 1 vì người đi đang có số chẵn viên kẹo và có thể bốc 2 viên kẹo cuối cùng để giành chiến thắng. Cũng như vậy f(C, 3) = 1 (bốc 2). Tương tự như thế thì f(L, 1) = 1 (bốc 1), F(L, 2) = 1 (bốc 1), F(L, 3) = 1 (bốc 3).

Để tính f(C, 4) ta để ý rằng lúc này đối thủ đang có số lẻ viên kẹo. Nếu ta bốc 1, 2 hoặc 3 viên thì sẽ đưa đối thủ đến các trạng thái (L, 3), (L, 2), (L, 1) tương ứng, và đều là các trạng thái thắng của đối thủ. Suy ra f(C, 4) = 0. Với f(L, 4) ta bốc 3 viên, đưa đối thủ vào trạng thái thua (C, 1) và giành chiến thắng.

Tiếp tục, để tính f(C, 5) ta để ý rằng lúc này đối thủ đang có số chẵn viên kẹo. Do đó ta bốc 1 viên và đưa đối thủ vào trạng thái (C, 4) là trạng thái thua, như vậy f(C,5) = 1. Ngược lại từ (L, 5) ta chỉ có thể đưa về (L, 4), (L, 3), (L, 2) là các trạng thái thắng, suy ra f(L, 5) = 0.

Nói tóm lại, một trạng thái là thua nếu mọi cách đi đều đưa về trạng tháng thắng (cho đối thủ), một trạng thái là thắng nếu có một cách đi đưa về trạng thái thua (cho đối thủ). Bằng lý luận này, ta lập được bảng giá trị sau.

 123456789
C011011110
L111101101
 101112131415161718
C110111101
L111011011
 19202122232425  
C1011110  
L1101101  

Như vậy f(C, 25) = 0, tức là Bình có chiến thuật thắng.

(Đây là bài toán khá khó trong lý thuyết thuật toán và trò chơi).

6 tháng 8 2019

mày nói rõ là 1hay3 được ko

7 tháng 8 2019

bài mày giống của tao ihet cả đoạn tom và jerry nữa nhưng của tao là lớp 6

28 tháng 6 2023

Để tìm chiến thuật chơi để An là người thắng cuộc, ta cần xem xét các trường hợp có thể xảy ra.

Trong trường hợp này, số viên kẹo trong hai túi là 18 và 21. Ta có thể tạo bảng để phân tích các trường hợp:

| Lượt chơi | Túi 1 (18 viên) | Túi 2 (21 viên) |
|-----------|----------------|----------------|
| 1         | 17             | 20             |
| 2         | 16             | 19             |
| 3         | 15             | 18             |
| 4         | 14             | 17             |
| 5         | 13             | 16             |
| 6         | 12             | 15             |
| 7         | 11             | 14             |
| 8         | 10             | 13             |
| 9         | 9              | 12             |
| 10        | 8              | 11             |
| 11        | 7              | 10             |
| 12        | 6              | 9              |
| 13        | 5              | 8              |
| 14        | 4              | 7              |
| 15        | 3              | 6              |
| 16        | 2              | 5              |
| 17        | 1              | 4              |
| 18        | 0              | 3              |

Dựa vào bảng trên, ta nhận thấy rằng nếu An chơi một cách thông minh, an sẽ luôn giữ số viên kẹo trong hai túi ở cùng một mức. Điều này đảm bảo rằng Bình sẽ không thể lấy hết kẹo từ một túi nào đó và An sẽ luôn có cơ hội lấy kẹo từ túi còn lại.

Vì vậy, chiến thuật chơi của An là giữ số viên kẹo trong hai túi ở cùng mức. Khi Bình lấy đi một viên kẹo từ một túi, An sẽ lấy đi một viên kẹo từ túi còn lại để duy trì số viên kẹo ở cùng mức.

Với chiến thuật này, An sẽ luôn là người thắng cuộc vì An có thể điều khiển trò chơi sao cho Bình không thể lấy hết kẹo từ một túi nào đó.

17 tháng 6 2017

Đáp án

Khi bốc theo qui tắc của trò chơi thì cuối cùng số bi còn lại là 1 viên. Khi còn 1 viên thì không ai có thể bốc tiếp được nữa vì nếu bốc nốt 1 viên thì lại lớn hơn 1/2 số bi còn lại.

Đề bài cho chưa rõ ràng: ai đến lượt đi mà không còn bi để bốc thì thua. Sẽ có 3 cách hiểu về trường hợp số bi còn lại bằng 1:

- Trò chơi kết thúc hòa cho cả hai đối thủ vì bi vẫn còn nhưng không còn cách đi hợp lệ. Trong trường hợp này thì trò chơi luôn kết thúc hòa.

- Trò chơi kết thúc thua với người đến lượt đi mà số bi còn lại là 1. (vì đến lượt đi mà không bốc được nữa là thua). Như vậy người nào đến lượt đi mà số bi còn lại là 1 thì thua. Lần ngược lên, người nào đến lượt mình đi mà số bi còn lại là 2 sẽ thắng; Người nào đến lượt đi mà số bi còn lại là 3 sẽ thua (vì chỉ được bốc 1 viên và số bi còn lại là 2 nhưng quyền bốc tiếp theo thuộc người kia); Người nào đến lượt đi mà số bi còn lại là 4 sẽ thắng (bốc 1 viên); Người nào đến lượt đi mà số bi còn lại là 5 sẽ thắng (bốc 2 viên); Người nào đến lượt đi mà số bi còn lại là 6 sẽ thắng (bốc 3 viên); Người nào đến lượt đi mà số bi còn lại là 7 sẽ thua (vì bốc 1, 2 hoặc 3 viên thì còn lại 6, 5 hoặc 4 đều là tình huống thắng cho đối phương); Người nào đến lượt đi mà số bi còn lại là 11 sẽ thắng (bốc 4 viên để còn 7 viên để đối thủ rơi vào tình huống thua). Như vậy An thắng.

- Trò chơi kết thúc thắng với người bốc viên bi cuối cùng (được phép bốc viên biên cuối cùng). Lần ngược như trên thì An sẽ thua.

Bạn nào chọn đúng cho mình mình sẽ ......................................... lại!!!!