Cho tam giác ABC có AB bằng AC,trên cạnh AB lấy điểm M,trên cạnh AC lấy điểm N sao cho AM bằng AN.Gọi H là trung điểm của BC.
a/ Chứng minh:Góc ABH bằng góc ACH
b/ Gọi E là giao điểm của AH và NM.Cứng minh:Tam giác AME bằng Tam giác ANE
c/ Chứng minh:MN song song BC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{ABH}=\widehat{ACH}\)
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: ˆABC=ˆACB(hai góc ở đáy)
hay ˆABH=ˆACH
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: ˆBAH=ˆCAH(hai góc tương ứng)
hay ˆMAE=ˆNAE
Xét ΔAME và ΔANE có
AM=AN(gt)
ˆMAE=ˆNAE(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên ˆAEM=ˆAEN(hai góc tương ứng)
mà ˆAEM+ˆAEN=1800(hai góc so le trong)
nên ˆAEM=ˆAEN=18002=900
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên ˆAHB=ˆAHCAHB^=AHC^(hai góc tương ứng)
mà ˆAHB+ˆAHC=1800(hai góc kề bù)
nên ˆAHB=ˆAHC=18002=900
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)