Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{ABH}=\widehat{ACH}\)
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: ˆABC=ˆACB(hai góc ở đáy)
hay ˆABH=ˆACH
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: ˆBAH=ˆCAH(hai góc tương ứng)
hay ˆMAE=ˆNAE
Xét ΔAME và ΔANE có
AM=AN(gt)
ˆMAE=ˆNAE(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên ˆAEM=ˆAEN(hai góc tương ứng)
mà ˆAEM+ˆAEN=1800(hai góc so le trong)
nên ˆAEM=ˆAEN=18002=900
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên ˆAHB=ˆAHCAHB^=AHC^(hai góc tương ứng)
mà ˆAHB+ˆAHC=1800(hai góc kề bù)
nên ˆAHB=ˆAHC=18002=900
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
a. xét tam giác ABH và tam giác ACH
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )
Vậy tam giác ABH = tam giác ACH ( c.g.c )
b. xét tam giác vuông BNH và tam giác vuông CNH
BN = CM ( AB = AC ; AM = AN )
BH = CH
Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )
c. áp dụng định lý pitao vào tam giác vuông AHB:
\(AB^2=AH^2+BH^2\)
\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)
=> BC = BH. 2 = 8.2 =16 cm
Chúc bạn học tốt!!!
a, Xét tam giác ABH và tam giác ACH
^AHB = ^AHC = 900
AB = AC (gt)
AH _ chung
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam ANB và tam giác AMC có :
^A _ chung
AM = AN(gt)
AB = AC (gt)
Vậy tam giác ANB = tam giác AMC ( c.g.c )
=> BN = CM ( 2 cạnh tương ứng )
c, Xét tam giác ABH vuông tại H, theo định lí Pytago
\(BH=\sqrt{AB^2-AH^2}=6cm\)
Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến
=> BC = 2BH = 12 cm
a, Xét tam giác ABH và tam giác ACH ta có :
AB = AC ( gt )
AM = AN ( gt )
AH _ chung
=> tam giác ABH = tam giác ACH ( c.c.c )
Bài rất hay !
a) Xét tam giác ABM và tam giác ANM có
\(\widehat{BAM}\) = \(\widehat{NAM}\) (Vì AM là phân giác góc A)
AB = AN (gt)
Chung AM
=> Tam giác ABM = Tam giác ANM (c.g.c)
b) Ta có \(\widehat{ABM}\)+\(\widehat{EBE}\) = 180 độ
\(\widehat{ANM}\) + \(\widehat{CNM}\) = 180 độ
mà \(\widehat{ABM}\)=\(\widehat{ANM}\)(Vì tam giác ABM = Tam giác ANM)
=> \(\widehat{EBE}\)= \(\widehat{CNM}\)
Lại có BM = NM (Vì tam giác ABM = Tam giác ANM)
Xét tam giác BME và Tam giác NMC có
\(\widehat{EBE}\) =\(\widehat{CNM}\)
BM = NM
\(\widehat{BME}\) = \(\widehat{NMC}\) (Đối đỉnh)
=> Tam giác BME = Tam giác NMC (c.g.c)
=> BE = NC (2 cạnh tương ứng)
c) Xét tam giác ABN
Có AB = AN (gt) => Tam giác ABN cân
=> Đường phân giác cũng là đường cao => AM vuông góc với BN (1)
Ta có BE = NC (cmt)
AB = AN
mà AE = AB+BE, AC = AN + CN
=> AE = AC
=> Tam giác AEC cân
=> đường phân giác cũng là đường cao => AM Vuông góc với EC (2)
Từ (1), (2) => BN // EC (Cùng vuông góc với AM) - đpcm
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
XÉT TAM GIÁC ABH VÀ ACH CÓ
AH CHUNG
GÓC AHB= GÓC AHC
GÓC B=GÓC C
=>TAM GIÁC ABH = TAM GIÁC ACH (CH-GN)