Phân tích đa thức sau thành nhân tử:
a) 4xy+x²-3x-12y
b) 27 - (x - 1)³
c) 4x² -17xy+13y²
d) 4x³ - 25x² -53x - 24
e) x³ + 9x² + 26x + 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(3-x+1\right)\left(9+3x-3+x^2-2x+1\right)\\ =\left(4-x\right)\left(x^2+x+7\right)\\ b,=4x^2-4xy-13xy+13y^2\\ =4x\left(x-y\right)-13y\left(x-y\right)\\ =\left(4x-13y\right)\left(x-y\right)\\ c,=4\left(x^2-xy-2y^2\right)\\ =4\left(x^2+xy-2xy-2y^2\right)\\ =4\left(x+y\right)\left(x-2y\right)\\ d,=x^3+4x^2+5x^2+20x+6x+24\\ =\left(x+4\right)\left(x^2+5x+6\right)\\ =\left(x+4\right)\left(x^2+2x+3x+6\right)\\ =\left(x+4\right)\left(x+2\right)\left(x+3\right)\\ f,=x\left(x+4y\right)-3\left(x+4y\right)=\left(x-3\right)\left(x+4y\right)\\ g,=4x^3+4x^2-29x^2-29x-24x-24\\ =\left(x+1\right)\left(4x^2-29x-24\right)\\ =\left(x+1\right)\left(4x^2-32x+3x-24\right)\\ =\left(x+1\right)\left(x-8\right)\left(4x+3\right)\)
\(a,27-\left(x-1\right)^3=\left(3-x+1\right)\left[9+3\left(x-1\right)+\left(x+1\right)^2\right]=\left(4-x\right)\left(9+3x-3+x^2+2x+1\right)=\left(4-x\right)\left(x^2+5x+7\right)\)
\(b,4x^2-17xy+13y^2=\left(4x^2-4xy\right)-\left(13xy-13y^2\right)=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)
\(c,4x^2-4xy-8y^2=4\left(x^2-xy-2y^2\right)\)
\(d,x^3+9x^2+26x+24=\left(x^3+2x^2\right)+\left(7x^2+14x\right)+\left(12x+24\right)=\left(x+2\right)\left(x^2+7x+12\right)=\left(x+2\right)\left[\left(x^2+3x\right)+\left(4x+12\right)\right]=\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(f,4xy+x^2-3x-12y=x\left(4y+x\right)-3\left(x+4y\right)=\left(x+4y\right)\left(x-3\right)\)
\(g,4x^3-25x^2-53x-24=\left(4x^3-32x^2\right)+\left(7x^2-56x\right)+\left(3x-24\right)=\left(4x^2+7x+3\right)\left(x-8\right)=\left[\left(4x^2+4x\right)+\left(3x+3\right)\right]=\left(4x+3\right)\left(x+1\right)\left(x-8\right)\)
a) x2+x-2
= x2-x+2x-2
= x(x-1)+2(x-1)
= (x+2)(x-1)
b) 2x2+5x+3
= 2x2+2x+3x+3
= 2x(x+1)+3(x+1)
= (2x+3)(x+1)
c) 3x2+5x-2
= 3x2+6x-1x-2
= 3x(x+2)-1(x+2)
= (3x-1)(x+2)
a: \(x^4+3x^3+x^2+3x\)
\(=x\left(x^3+3x^2+x+3\right)\)
\(=x\left(x+3\right)\left(x^2+1\right)\)
c: \(x^2-xy-x+y\)
\(=x\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x-1\right)\)
Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
\(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
\(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
\(=\left(x^2+5x+8\right)\left(x^2+4x+2x+8\right)=\left(x^2+5x+8\right)\left[x\left(x+4\right)+2\left(x+4\right)\right]\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)