Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1 + x2)2 - 4x(1 - x2)
= (1 + x2)(1 + x2) - 4x(1 - x2)
= (1 + x2 - 4x)(1 + x2 - 1 + x2)
= 2x2(x2 - 4x + 1)
Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)
\(=x^4+2x^2+1+4x^3-4x\)
\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)
\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)
\(\left(x^2+x\right)^2+4x^2+4x-12=\left[\left(x^2+x\right)^2+4\left(x^2+x\right)+4\right]-16=\left(x^2+x+2\right)-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12\\ =\left(x^2+x+2\right)-4\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\)
a, \(x^2-4x+3=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
TH1 : x = 3 ; TH2 : x = 1
b, \(2x^2-3x-2=0\Leftrightarrow\left(x-2\right)\left(x+\frac{1}{2}\right)=0\)
TH1 : x = 2 ; TH2 : x = -1/2
c, Đặt \(x^2=t\left(t\ge0\right)\)
\(t^2+2t-8=0\Leftrightarrow\left(t-2\right)\left(t+4\right)=0\)
TH1 : t = 2 ; TH2 : t = -4
Tương tự ...
1a)
x2 - 4x + 3 = x2 - x - 3x + 3
= x( x - 1 ) - 3( x - 1 )
= ( x - 1 )( x - 3 )
2c)
2x2 - 3x - 2 = 2x2 + x - 4x - 2
= x( 2x +1 ) - 2( 2x + 1 )
= ( 2x + 1 )( x - 2 )
3e)
x4 + 2x2 - 8 (*)
Đặt t = x2
(*) <=> t2 + 2t - 8
= t2 - 2t + 4t - 8
= t( t - 2 ) + 4( t - 2 )
= ( t - 2 )( t + 4 )
= ( x2 - 2 )( x2 + 4 )
4b) x2 + 4x - 12 = x2 - 2x + 6x - 12
= x( x - 2 ) + 6( x - 2 )
= ( x - 2 )( x + 6 )
d) 2x3 + x - 2x2 - 1 = 2x2( x - 1 ) + 1( x - 1 )
= ( x - 1 )( 2x2 + 1 )
f) x2 - 2xy - 3y2 = ( x2 - 2xy + y2 ) - 4y2
= ( x - y )2 - ( 2y )2
= ( x - y - 2y )( x - y + 2y )
= ( x - 3y )( x + y )
\(\left(x^2+6x-1\right)^2+2x^2+x^4+2\left(x^2+6x-1\right)\left(x^2+1\right)\)
\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^2+1\right)^2-1=\left(x^2+6x-1+x^2+1\right)^2-1=\left(2x^2+6x\right)^2-1=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)
\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+x^4+2x^2\)
\(=\left(x^2+6x-1\right)\left(x^2+6x-1+2x^2+2\right)+x^4+2x^2\)
\(=\left(x^2+6x-1\right)\left(3x^2+6x+1\right)+x^4+2x^2\)
\(=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)
\(3x^6-4x^5+2x^4-8x^3+2x^2-4x+3\)
\(=3x^6+3x^4-4x^5-4x^3-x^4-x^2-4x^3-4x+3x^2+3\)
\(=\left(x^2+1\right)\left(3x^4-4x^3-x^2-4x+3\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\left(3x^2-7x+3\right)\)
\(\left(x^2-3x\right)^2-14x^2+42x+40\\ =\left(x^2-3x-7\right)^2-9\\ =\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
x2-2xy+y2+3x-3y-10
= (x-y)2+3(x-y)-10
= [(x-y)2+5(x-y)]-[2(x-y)+10]
= (x-y)(x-y+5)-2(x-y+5)
= (x-y+5)(x-y-2)
Ta có: \(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y+5\right)\left(x-y-2\right)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(=\left(x^2+5x+8\right)\left(x^2+4x+2x+8\right)=\left(x^2+5x+8\right)\left[x\left(x+4\right)+2\left(x+4\right)\right]\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)