K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: ΔBAC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

5 tháng 6 2016

Tam giác ABC có AB = AC (gt) => tam giác ABC cân tại A

=> tia phân giác góc A là AM vuông góc với cạnh BC (trong 1 tam giác cân, tia phân giác góc ở đỉnh cũng là đường vuông góc với cạnh đáy của tam giác đó) (khúc này nếu thầy bạn không có dạy thì nhắn tin cho mình để mình chứng minh vuông góc bằng hai tam giác bằng nhau)

Ta có: IH vuông góc BC (gt) (1)

          AM vuông góc BC (cmt) (2)

=> Từ (1)(2) suy ra: IH // AM (cùng vuông góc với BC)

=> góc BIH = góc BAM (đồng vị)

Mà góc BAM = 2 lần góc BAC (do tia AM là tia phân giác)

=> góc BIH = 2 lần góc BAC

Vậy góc BIH = 2 lần góc BAC

16 tháng 12 2015

it so hard 

it very hard to me

29 tháng 11 2021

a

vì AM là tia phân giác của góc A=>góc BAM=CAM

xét  tam giác AMB và tam giác AMC có: 

góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC

b

vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC

vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC

c

xét tam giác ABM và KCM có

MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK

vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK

29 tháng 11 2021

Xài Telex cho nóa đẹp đy !

19 tháng 1 2022

a. Xét tam giác ABC có: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

Mà AH là phân giác \(\widehat{A}\) (gt).

\(\Rightarrow\) AH là đường cao; AH là đường trung tuyến (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) AH \(\perp\) BC; H là trung điểm của BC. 

Xét tam giác EBH và tam giác ECH:

BH = CH (H là trung điểm của BC).

EH chung.

\(\widehat{EHB}=\widehat{EHC}\) \(\left(=90^o\right).\)

\(\Rightarrow\) Tam giác EBH = Tam giác ECH (c - g - c).

\(\Rightarrow\) BE = CE (2 cạnh tương ứng).

b) Xét tam giác ABC cân tại A:  AH là phân giác \(\widehat{A}\) (gt).

\(\Rightarrow\) AH là đường trung trực của BC (Tính chất các đường trong tam giác cân).

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

a) Vì $M$ là trung điểm của $BC$ nên $BM=CM$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (giả thiết)

$AM$ chung

$BM=CM$ (cmt)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b) 

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$ hay $\widehat{BAK}=\widehat{CAK}$

Xét tam giác $BAK$ và $CAK$ có:

$BA=CA$ (gt)

$AK$ chung

$\widehat{BAK}=\widehat{CAK}$ (cmt)

$\Rightarrow \triangle BAK=\triangle CAK$ (c.g.c)

$\Rightarrow KB=KC$ 

c) Từ tam giác bằng nhau phần b suy ra $\widehat{ABK}=\widehat{ACK}$

hay $\widehat{EBK}=\widehat{FCK}$

Xét tam giác $EBK$ và $FCK$ có:

$\widehat{EBK}=\widehat{FCK}$ (cmt)

$BK=CK$ (cmt)

$\widehat{EKB}=\widehat{FKC}$ (đối đỉnh)

$\Rightarrow \triangle EBK=\triangle FCK$ (g.c.g)

$\Rightarrow EK=FK$ nên tam giác $KEF$ cân tại $K$

$\Rightarrow \widehat{KEF}=\frac{180^0-\widehat{EKF}}{2}(1)$

$KB=KC$ nên tam giác $KBC$ cân tại $K$

$\Rightarrow \widehat{KCB}=\frac{180^0-\widehat{BKC}}{2}(2)$

Từ $(1);(2)$ mà $\widehat{EKF}=\widehat{BKC}$ (đối đỉnh) nên $\widehat{KEF}=\widehat{KCB}$ 

Hai góc này ở vị trí so le trong nên $EF\parallel CB$ (đpcm)

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:

undefined