Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM và ΔCAM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
=>MB=MC
b: ΔABC cân tại A
mà AI là đường phân giác
nên AI là trung trực của BC
a, xét tam giác abm và tam giác acm có:
ab=ac(gt)
góc bam=góc acm(gt)
am chung
=>tam giác abm=tam giác acm(cgc)
=>bm=cm(2 cạnh tương ứng)
b, xét tam giác abi và tam giác aci có:
ab=ac(gt)
góc bam=góc acm(gt)
ai chung
=>tam giác abi = tam giác aci(cgc)
=>ib=ic (2 cạnh tương ứng)
=> i cách đều b và c
=>ai là đường trung trực của bc
b: Ta có: ΔBAC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
a; Ta có: O nằm trên đường trung trực của BE
nên OB=OE
a. Xét tam giác ABC có: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
Mà AH là phân giác \(\widehat{A}\) (gt).
\(\Rightarrow\) AH là đường cao; AH là đường trung tuyến (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AH \(\perp\) BC; H là trung điểm của BC.
Xét tam giác EBH và tam giác ECH:
BH = CH (H là trung điểm của BC).
EH chung.
\(\widehat{EHB}=\widehat{EHC}\) \(\left(=90^o\right).\)
\(\Rightarrow\) Tam giác EBH = Tam giác ECH (c - g - c).
\(\Rightarrow\) BE = CE (2 cạnh tương ứng).
b) Xét tam giác ABC cân tại A: AH là phân giác \(\widehat{A}\) (gt).
\(\Rightarrow\) AH là đường trung trực của BC (Tính chất các đường trong tam giác cân).