tìm số nguyên x biết a)x+(-5)=10 b)-2x-(-27)=25 mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lâu rồi mình ko giải, sai thì thôi nhé!
a) \(\left(10-2x\right)^2=25-\left(-11\right)\)'=
\(\Leftrightarrow\left(10-2x\right)^2=36\)
\(\Leftrightarrow\left(10-2x\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}10-2x=6\\10-2x=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=10-6\\2x=10-\left(-6\right)\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=4\\2x=16\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=8\end{cases}}}\)
Vậy \(x\in\left\{2;8\right\}\)
b) \(-2\left(-x+5\right)-3\left(5-x\right)=4\left(2+x\right)\)
\(\Leftrightarrow-2\left(5-x\right)-3\left(5-x\right)=4\left(2+x\right)\)
\(\Leftrightarrow-5\left(5-x\right)=4\left(2+x\right)\)
\(\Leftrightarrow-25+5x=8+4x\)
\(\Leftrightarrow5x-25=8+4x\)
\(\Leftrightarrow5x=8+4x+25\)
\(\Leftrightarrow5x=4x+33\)
\(\Leftrightarrow5x-4x=33\)
\(\Leftrightarrow1x=33\)
\(\Leftrightarrow x=33\)
Vậy \(x=33\)
a) (10 - 2x)2 = 25 - (-11)
(10 - 2x)2 = 36
(10 - 2x)2 = 62
=> 10 - 2x = 6
2x = 10 - 6
2x = 4
x =4:2
x=2
Vậy x = 2
b)-2(-x+5) - 3(5 - x) = 4(2+x)
2x - 10 - 15 +3x = 8 + 4x
2x - 25 + 3x = 8 +4x
2x + 3x - 4x = 8 + 25
5x - 4x = 33
x= 33
Vậy x = 33
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
a)\(-17+\left|5-x\right|=10\)
\(\Leftrightarrow\left|5-x\right|=10-\left(-17\right)\)
\(\Leftrightarrow\left|5-x\right|=10+17\)
\(\Leftrightarrow\left|5-x\right|=27\)
\(\Leftrightarrow\orbr{\begin{cases}5-x=27\\5-x=-27\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-22\\x=32\end{cases}}\)
b) \(45-5\left|12-x\right|=125\div\left(-25\right)\)
\(\Leftrightarrow45-5\left|12-x\right|=-5\)
\(\Leftrightarrow5\left|12-x\right|=45-\left(-5\right)\)
\(\Leftrightarrow5\left|12-x\right|=45+5\)
\(\Leftrightarrow5\left|12-x\right|=50\)
\(\Leftrightarrow\left|12-x\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}12-x=10\\12-x=-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)
c) \(2< \left|3-x\right|\le5\)
\(\Leftrightarrow\left|3-x\right|\in\left\{3;4;5\right\}\)
* \(\left|3-x\right|=3\Leftrightarrow\orbr{\begin{cases}3-x=3\\3-x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
* \(\left|3-x\right|=4\Leftrightarrow\orbr{\begin{cases}3-x=4\\3-x=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}}\)
* \(\left|3-x\right|=5\Leftrightarrow\orbr{\begin{cases}3-x=5\\3-x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
d) \(\left|x+4\right|< 3\)
mà \(\left|x+4\right|\ge0\)
\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)
* \(\left|x+4\right|=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
* \(\left|x+4\right|=1\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)
* \(\left|x+4\right|=2\Leftrightarrow\orbr{\begin{cases}x+4=2\\x+4=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-6\end{cases}}}\)
a, 2x + 35 -x+27=0
x +62=0
x=-62
b, 2x -41 -3x + 23 =0
-x -18=0
-x=18
x=-18
c, 4x -12-3x-15= -124
x -27=-124
x= -97
d, Suy ra x+3 =0 hoặc 2x-18=0
x=-3 hoặc 2x=18 => x=9
vậy x=-3 hoặc x=9
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a)\(x+\left(-5\right)=10\)
⇔\(x-5=10\)
⇔\(x=15\)
b)\(-2x-\left(-27\right)=25\)
⇔\(-2x+27=25\)
⇔\(-2x=-2\)
⇔\(x=1\)