K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

a) Trên tia đối tia MA lấy điểm F sao cho AM = AF (*)

Xét tam giác BFM và tam giác ACM có:

AM = FM (theo *)

Góc BMF = góc AMC (2 góc đối đỉnh)

BM = CM (vì M là trung điểm của BC)

=> Tam giác BFM = tam giác CAM (c.g.c)

=> AC = BF (2 cạnh tương ứng)

Vì AC = AE (gt) nên AE = BF

Ta có: góc F = góc CAM (vì tam giác BFM = tam giác CAM)

Mà 2 góc này ở vị trí so le trong

=> BF // AC (dấu hiệu nhận biết)

=> Góc BAC + góc ABF = 180 độ (2 góc trong cùng phía)

Mà góc BAC + góc DAE = 180 độ 

=> Góc DAE = góc ABF

Xét tam giác ABF và tam giác ADE có:

AB = AD (gt)

Góc DAE = góc ABF (chứng minh trên)

AE = BF (2 cạnh tương ứng)

=> Tam giác ADE = tam giác BAF (c.g.c)

=> AF = DE (2 cạnh tương ứng)

Lại có: AM = AF : 2 => AM = DE : 2   (đpcm)

b) Gọi giao điểm của AM và DE là N

Ta có: tam giác ADE = tam giác BAF (chứng minh trên)

=> Góc D = góc BAF (2 góc tương ứng)

Mà góc BAF + góc DAN = 180 độ - góc BAD = 180 độ - 90 độ = 90 độ

=> Góc D + góc DAN = 90 độ

=> Tam giác ADN vuông tại N

hay AM _|_ DE   (đpcm)

28 tháng 11 2017

A B C D E M F I K J

Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)

\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.

Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)

Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)

Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)

\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)

Kéo dài NI cắt DE tại J, AI cắt DE tại F.

Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)

Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)

Hay \(AM\perp DE.\)

30 tháng 12 2017

a) Kẻ MN là tia đối của tia MA và MN = MA

Kéo dài AM cắt DE tại H

Xét ΔΔAMC và ΔΔNMB có:

AM = NM (cho ở trên)

AMCˆAMC^ = NMBˆNMB^ (đối đỉnh)

MC = MB (suy từ gt)

=> ΔΔAMC = ΔΔNMB (c.g.c)

=> ACMˆACM^ = NBMˆNBM^ (2 góc t/ư)

mà 2 góc này ở vị trí so le trong nên AC // BN

=> BACˆBAC^ + ABNˆABN^ = 180o (trong cùng phía) (3)

Vì DA ⊥⊥ AB nên DABˆDAB^ = 90o;

EA ⊥⊥ AC nên EACˆEAC^ = 90o

Ta có: DAHˆDAH^ + DABˆDAB^ + BANˆBAN^ = 180o

=> DAHˆDAH^ + 90o + BANˆBAN^ = 180o

=> DAHˆDAH^ + BANˆBAN^ = 90o (1)

Lại có: EAHˆEAH^ + EACˆEAC^ + CANˆCAN^ = 180o

=> EAHˆEAH^ + 90o + CANˆCAN^ = 180o

=> EAHˆEAH^ + CANˆCAN^ = 90o (2)

Cộng vế (1) và (2) ta đc:

DAHˆDAH^ + BANˆBAN^ + EAHˆEAH^ + CANˆCAN^ = 90o + 90o

=> (DAHˆDAH^ + EAHˆEAH^) +(BANˆBAN^ + CANˆCAN^) = 180o

=> DAEˆDAE^ + BACˆBAC^ = 180o (4)

Từ (3) và (4) suy ra:

BACˆBAC^ + ABNˆABN^ = DAEˆDAE^ + BACˆBAC^

=> ABNˆABN^ = DAEˆDAE^

Do ΔΔAMC = ΔΔNMB (c/m trên)

=> AC = NB (2 cạnh t/ư)

mà AC = AE (gt)

=> NB = AE

Xét ΔΔABN và ΔΔDAE có:

AB = DA (gt)

ABNˆABN^ = DAEˆDAE^ (c/m trên)

NB = AE (c/m trên)

=> ΔΔABN = ΔΔDAE (c.g.c)

=> AN = DE 92 cạnh t/ư)

mà AM = 1212 AN nên AM = 1212 DE.

25 tháng 1 2018

cộng là gì đó bạn ?