K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

a) Kẻ MN là tia đối của tia MA và MN = MA

Kéo dài AM cắt DE tại H

Xét ΔΔAMC và ΔΔNMB có:

AM = NM (cho ở trên)

AMCˆAMC^ = NMBˆNMB^ (đối đỉnh)

MC = MB (suy từ gt)

=> ΔΔAMC = ΔΔNMB (c.g.c)

=> ACMˆACM^ = NBMˆNBM^ (2 góc t/ư)

mà 2 góc này ở vị trí so le trong nên AC // BN

=> BACˆBAC^ + ABNˆABN^ = 180o (trong cùng phía) (3)

Vì DA ⊥⊥ AB nên DABˆDAB^ = 90o;

EA ⊥⊥ AC nên EACˆEAC^ = 90o

Ta có: DAHˆDAH^ + DABˆDAB^ + BANˆBAN^ = 180o

=> DAHˆDAH^ + 90o + BANˆBAN^ = 180o

=> DAHˆDAH^ + BANˆBAN^ = 90o (1)

Lại có: EAHˆEAH^ + EACˆEAC^ + CANˆCAN^ = 180o

=> EAHˆEAH^ + 90o + CANˆCAN^ = 180o

=> EAHˆEAH^ + CANˆCAN^ = 90o (2)

Cộng vế (1) và (2) ta đc:

DAHˆDAH^ + BANˆBAN^ + EAHˆEAH^ + CANˆCAN^ = 90o + 90o

=> (DAHˆDAH^ + EAHˆEAH^) +(BANˆBAN^ + CANˆCAN^) = 180o

=> DAEˆDAE^ + BACˆBAC^ = 180o (4)

Từ (3) và (4) suy ra:

BACˆBAC^ + ABNˆABN^ = DAEˆDAE^ + BACˆBAC^

=> ABNˆABN^ = DAEˆDAE^

Do ΔΔAMC = ΔΔNMB (c/m trên)

=> AC = NB (2 cạnh t/ư)

mà AC = AE (gt)

=> NB = AE

Xét ΔΔABN và ΔΔDAE có:

AB = DA (gt)

ABNˆABN^ = DAEˆDAE^ (c/m trên)

NB = AE (c/m trên)

=> ΔΔABN = ΔΔDAE (c.g.c)

=> AN = DE 92 cạnh t/ư)

mà AM = 1212 AN nên AM = 1212 DE.

25 tháng 1 2018

cộng là gì đó bạn ?

24 tháng 11 2018

xem câu trả lời của nguyễn thanh hà í

26 tháng 6 2019

Câu này của nâng cao lớp 7 bạn ạ

1 tháng 1 2020

x H y E D A B M C K

a, Để chứng tỏ DE = 2AM,ta tạo ra đoạn thẳng gấp đôi AM bằng cách lấy K trên tia đối của tia MA sao cho MK = MA,ta sẽ chứng minh AK = DE

Dễ thấy AC = BK, AC // BK . Xét \(\Delta ABK\)và \(\Delta DAE\), ta có :

  AB = AD gt

 BK = AE cùng bằng AC 

  \(\widehat{ABK}=\widehat{DAE}\)cùng bù với góc BAC

Do đó \(\Delta ABK=\Delta DAE(c.g.c)\)

\(\Rightarrow AK=DE\)hai cạnh tương ứng

Vậy AM = DE/2 

b, Gọi H là giao điểm của MA và DE.Ta có \(\widehat{BAK}+\widehat{DAH}=90^0\)nên \(\widehat{D}+\widehat{DAH}=90^0\), do đó góc AHD = 900

28 tháng 11 2017

A B C D E M F I K J

Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)

\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.

Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)

Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)

Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)

\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)

Kéo dài NI cắt DE tại J, AI cắt DE tại F.

Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)

Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)

Hay \(AM\perp DE.\)