Cho tam giác ABC vuông tại A. AB bằng 1/2 BC trên tia đối AB lấy D sao cho AB= AD a) chứng minh tam giác ABC= tam giác ADC b) Tính số đo các góc ABC; ACB GIÚP MÌNH VỚi MÌNH CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
a)Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (ĐL Pytago)
\(5^2=3^2+AC^2\)
25=9+\(AC^2\)
25-9=\(AC^2\)
\(AC^2\)=16
Vậy...
b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)
Xét tam giác BAC và tam giác DAC có:
BC=AD(gt)
góc BAC=góc DAC(cmt =90độ )
AC cạnh chung
\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)
\(\Rightarrow BC=DC\)(..)(1)
và góc B= góc D(...)(2)
Từ (1) và(2)có tam giác BCD cân tại C
Xet ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
b: Xét ΔCDH vuông tại D và ΔCBH vuông tại B có
CH chung
CD=CB
Do đó: ΔCDH=ΔCBH
Suy ra: DH=BH
a) xét \(\Delta ABE\)và \(\Delta DCE\)ta có:
AE=ED(gt)
BE=EC(E là trug điểm của BC)
\(\widehat{E1}=\widehat{E2}\)(đối đỉnh)
=> \(\Delta ABE\)= \(\Delta DCE\)(c.g.c)
b) từ câu a => \(\widehat{B1}=\widehat{C2}\)(cặp góc tương ứng)
mà hai góc đó ở vị trí so le trong => AB//DC (bn viết sai đề DE)
c) xét \(\Delta ABE\)và \(\Delta ACE\)ta có:
AE là cạnh chung
AB=AC(gt)
BE=EC(E là trug điểm của BC)
=> \(\Delta ABE\)=\(\Delta ACE\)(c.c.c)
=> \(\widehat{E1}=\widehat{E3}\)(cặp góc t/ứng)
mà \(\widehat{E1}+\widehat{E3}=180^o\Rightarrow2\widehat{E1}=180^o\Rightarrow\widehat{E1}=90^o\)
=> AE vuông góc với BC (đpcm)
p/s: tớ làm 1 bài thui nha :)) dài quá
Để tui bài 2!
a) Xét tam giác AKB và tam giác AKC có:
\(AB=AC\) (gt)
\(BK=CK\) (do K là trung điểm BC)
\(AK\) (cạnh chung)
Do đó \(\Delta AKB=\Delta AKC\) (1)
b) \(\Delta AKB=\Delta AKC\Rightarrow\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) (Kề bù)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{\widehat{AKB}}{1}=\frac{\widehat{AKC}}{1}=\frac{\widehat{ABK}+\widehat{AKC}}{1+1}=\frac{180^o}{2}=90^o\)
Suy ra AK vuông góc với BC (2)
c)\(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}=45^o\) (Do \(\widehat{KAB} +\widehat{KAB}=90^o\) và \(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}\))
Mà \(\widehat{AKC}=90^o\) (CMT câu b)
Suy ra \(\widehat{KCA}=180^o-\widehat{KAC}-\widehat{AKC}=180^o-45^o-90^o=45^o\)
Mà \(\widehat{KCA}+\widehat{ACE}=90^o\) (gt,khi vẽ đường vuông góc BC cắt AB tại E)
Suy ra \(\widehat{ACE}=90^o-\widehat{KCA}=90^o-45^o=45^o\)
Hay \(\widehat{KCA}=\widehat{ACE}=45^o\).Mà hai góc này ở vị trí so le trong,nên: \(EC//AK\) (3)
Từ (1),(2) và (3) ta có đpcm.