Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
a. Áp dụng định lý Pitago cho tam giác vuông ABC ta có: \(AC^2=BC^2-AC^2=10^2-6^2=64\)
Vậy \(AC=8cm\)
b. Do D nằm trên tia đối của tia AB nên \(\widehat{CAD}=90^O\)
Xét tam giác ABC và tam giác ADC có:
\(\widehat{CAB} = \widehat{CAD}=90^O\)
AC chung
AB=AD(giả thiết)
\(\Rightarrow\Delta ABC=\Delta ADC\)(Hai cạnh góc vuông)
c. Xét tam giác DCB có :
A là trung điểm BD,
AE song song BC
\(\Rightarrow\) AE là đường trung bình tam giác DBC., hay E là trung điểm DC. Vậy AE là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên EA=EC=ED. Vậy tma giác AEC cân tại E. ( Còn có thể có cách khác :) )
d. Xét tam giác DBC có CA là trung tuyến, lại có CA = 3OA nên O là trọng tâm tam giác DBC. Do F là trung điểm BC nên DF là đường trung tuyến. Vậy O nằm trên DF hay O, D, F thẳng hàng.
Chúc em học tốt ^^
a)
Theo định lí py ta go trong tam giác vuông ABC có :
BC2 = AB2 + AC2
Suy ra : AC2 = BC2 - AB2
AC2 =102 - 62
AC = căn bậc 2 của 36 = 6 (cm )
b)
Xét tam giác ABC và tam giác ADC có :
AC cạnh chung
Góc A1 = góc A2 = 90 độ (gt )
AB = AD ( gt )
suy ra : tam giác ABC = tam giác ADC ( c- g -c )
a) Áp dụng định lý Py-ta-go cho \(\Delta\)vuông ABC có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13\left(cm\right)\)
b) Xét \(\Delta ABC\)và \(\Delta ADC\)có:
\(\hept{\begin{cases}AB=AD\left(gt\right)\\gócBAC=gócDAC\left(=90^0\right)\\AC:chung\end{cases}}\)
\(\Rightarrow\Delta ABC=\Delta ADC\left(c.g.c\right)-\left(đpcm\right)\)
c) Xét \(\Delta BDC\)có: \(\hept{\begin{cases}\text{A là trung điểm BD}\\AE//BC\left(gt\right)\end{cases}}\)
\(\Rightarrow\text{E là trung điểm CD}\left(t/c\right)\)
Xét \(\Delta ADC\)vuông tại A có AE là đường trung tuyến ứng cạnh DC
\(\Rightarrow AE=\frac{1}{2}CD\left(t/c\right)=EC\left(\text{E là trung điểm CD}\right)\)
\(\Rightarrow\Delta AEC\)cân tại E (đpcm)
d) Gọi giao của AC và BE là O
Xét \(\Delta DBC\)có:\(\hept{\begin{cases}\text{BE là đường trung tuyến ứng cạnh CD }\left(gt\right)\\\text{CA là đường trung tuyến ứng cạnh BD }\left(gt\right)\end{cases}}\)
\(\Rightarrow\)O là trọng tâm của \(\Delta DBC\)
Mà DF là đường trung tuyến ứng cạnh BC
\(\Rightarrow\)CA, DF, BE cùng đồng quy tại 1 điểm (đpcm)
Á dụng định lý yTaGo vào tam giác vuông ABC ta có
BC2=AC2+AB2
BC2=122+52
BC2=169
Ý b
Xét tam giác ABC và tam giác ADC
góc CAB= góc CAD
AC chung
AB=AD
Vậy tam giác ABC= tam giác ADC(c.g.c)
ý c
Vì tam giác ABC= tam giác ADC(cmt)
suy ra góc ACD= góc ACB
mà AE song song với BC
suy ra góc EAC= góc ACB(hai góc sole trong)
mà góc ACD= góc ACB
vậy tam giác RAC cân tại E
ý d
gọi gia điểm của DF,CA,BE là I
Có FB=FC(F là trung điểm của BC)
AB=AD (gt)
suy ra DF và AC là hai đường trung tuyến của tam giác BDC
mà hai đường này cắt nhau tại I
suy ra I là trọng tâm của tam giác BDC
suy ra BE là đường trung tuyến còn lại
Vậy DF,CA,BE đồng quy tại 1 điểm
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
xét tam giác abc vuông tại a có
a) bc2=ac2+ab2=122+52=132
bc=13
b)xét tam giác abc vá tam giac adc có
ab=ad
góc bac= góc dac
ac là cạnh chung
=>tam giác abc =tam giác adc (c.g.c)
c)
Cho tam giác ABC vuông tại A với AB = 3cm, BC= 5cm
a) tính độ dài đoạn thẳng AC
b) trên tia đối của tia AB, lấy điểm D sao cho AB = AD. Chứng minh tam giác ABC = tam giác ADC, từ đó suy ra tam giác BCD cân
a) xét tam giác ABC và tam giác ACD có:
góc A = 900
AB = AD ( gt)
=> tam giác ABC = tam giác ACD
=> BC = CD (cạnh tương ứng)
=> tam giác BCD cân tại C
sai rùi bn !!!!!!!!!!!!!!!!!!!!!
a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
Cảm ơn bạn nhé