Cho biểu thức A=2010+20102+20103+20104+...+20102010
Chứng minh rằng A chia hết cho 2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2010+20102+20103+.....+20102010
A=2010(1+2010)+20103(1+2010)+........+20109(1+2010)
A=2010.2011+20103.2010+....+20109.2011
A=2011(2010+....+20109) chia hết cho 2011
=> A chia hết cho 2011(đpcm)
A = 2010 + 20102 + 20103 + ... + 20102010
A = 2010 . ( 1 + 2010 ) + 20103 . (1 + 2010 ) + ... + 20109 . ( 1 + 2010 )
A = 2010 . 2011 + 20103 . 2011 + ... + 20109 . 2011
A = 2011 . ( 2010 + 20103 + ... + 20109 )
Mà 2011 . ( 2010 + 20103 + ... + 20109 ) \(\in\)2011
=> A \(\in\)2011
๖²⁴ʱ𝒄𝒉𝒖́𝒄 𝒆𝒎 𝒉𝒐̣𝒄 𝒕𝒐̂́𝒕✟ᴾᴿᴼシ
Nó có chia hết à ???
Ta thấy 2009 chia 2010 dư -1
=> 2009 ^ 2008 chia 2010 dư 1 (1)
Lại có 2011 chia 2010 dư 1
=> 2011^2010 chia 2020 dư 1 (2)
Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )
2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010
=2009^2008+2011^2010
=2009^2008+2011^2010+1-1
=(2009^2008+ 1) + (2011^2010– 1)
= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010
\(f\left(0\right)=c\) mà \(f\left(0\right)⋮2011\Rightarrow c⋮2011\)
\(f\left(1\right)⋮2011\Rightarrow a+b+c⋮2011\Rightarrow a+b⋮2011\)
\(f\left(-1\right)⋮2011\Rightarrow a-b+c⋮2011\Rightarrow a-b⋮2011\)
\(\Rightarrow\left(a+b\right)+\left(a-b\right)⋮2011\Rightarrow2a⋮2011\)
Mà 2 và 2011 nguyên tố cùng nhau \(\Rightarrow a⋮2011\)
\(\left\{{}\begin{matrix}a⋮2011\\a+b⋮2011\end{matrix}\right.\) \(\Rightarrow b⋮2011\)
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
A=2010^1+2010^2+2010^3+..........................................+2010^2010
vay suy ra co tat ca 2010 s hang vay ghep cap
A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)
A=2010.2011+2010^3.2011+............................+2010^9.2011
A=2011(2010+........2010^9) chia het 2011
suy ra A chia het cho 2011