MN ơi giúp mik với!!!!
Tìm x,y biết: 1/ x.y =23
2/ (x-1 ).(y+2)= -4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y \(\times\) 2 +\(\dfrac{y}{\dfrac{1}{3}}\) = 20
\(y\times2+y\div\dfrac{1}{3}=20\)
\(y\times2+y\times3=20\)
\(y\times\left(2+3\right)=20\)
\(y\times5=20\)
\(y=20\div5\)
\(y=4\)
a: \(\Leftrightarrow\left(x+1;y-4\right)\in\left\{\left(1;19\right);\left(19;1\right);\left(-1;-19\right);\left(-19;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;23\right);\left(18;5\right);\left(-2;-15\right);\left(-20;3\right)\right\}\)
b: \(\Leftrightarrow\left(2x+1;y-5\right)\in\left\{\left(1;23\right);\left(23;1\right);\left(-1;-23\right);\left(-23;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;28\right);\left(11;6\right);\left(-1;-18\right);\left(-12;4\right)\right\}\)
http://olm.vn/hoi-dap/question/670658.html (bạn đưa ra từng trường hợp nhé!) => link vào đó mà tham khảo cách làm ...!
1./ \(x+y=3\Rightarrow\left(x+y\right)^3=27\Rightarrow x^3+y^3+3xy\left(x+y\right)=27\Rightarrow x^3+y^3+3\cdot2\cdot3=27.\)
\(\Rightarrow x^3+y^3=9\)
2./ \(\left(x+3\right)\left(x^2-3x+3^2\right)-x^3-2x-4=0\)
\(\Leftrightarrow x^3+27-x^3-2x-4=0\Leftrightarrow2x=23\Leftrightarrow x=\frac{23}{2}\)
1/ \(x+y=3\)
\(\Rightarrow\left(x+y\right)^2=9\)
\(\Rightarrow x^2+2xy+y^2=9\)
\(\Rightarrow x^2+4+y^2=9\)
\(\Rightarrow x^2+y^2=5\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.1=3\)
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
(x-y)(2y+1)= 11
=> x-y \(\in\)Ư(11) ={ 1;11; -1; -11}
Nếu x-y = 1 thì 2y+1= 11 => 2y= 10 => y=5 => x= 6
Nếu x-y= 11 thì 2y+1 = 1 => 2y=0 => y=0 => x= 11
Nếu x-y = -1 thì 2y+1= -11 => 2y= -12 => y= -6 => x= -7
.............................
Vậy....
(x-y)(2y+1)=11
x,y nguyên => x-y; 2y+1 = nguyên
=> x-y; 2y+1 thuộc Ư (11)={-11;-1;1;11}
Ta có bảng
2y+1 | -11 | -1 | 1 | 11 |
y | -6 | -1 | 0 | 5 |
x-y | -1 | -11 | 11 | 1 |
x | -7 | -12 | 11 | 6 |
Ta có: \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
\(\Rightarrow\frac{2}{2x}+\frac{xy}{2x}=\frac{5}{8}\)
\(\Rightarrow\frac{2+xy}{2x}=\frac{5}{8}\)
\(\Rightarrow8.\left(2+xy\right)=5.2x\)
\(\Rightarrow16+8xy=10x\)
\(\Rightarrow10x-8xy=16\)
\(\Rightarrow2x.5-2x.4y=16\)
\(\Rightarrow2x.\left(5-4y\right)=16\)
Với \(x;y\inℕ^∗\Rightarrow\hept{\begin{cases}2x\inℕ^∗\\5-4y\inℕ^∗\end{cases}}\)
mà 16 = 1.16 = 2.8 = 4.4
Lập bảng xét 6 trường hợp ta có :
\(2x\) | \(4\) | \(2\) | \(8\) | \(16\) | \(1\) |
\(x\) | \(2\) | \(1\) | \(4\) | \(8\) | \(\frac{1}{2}\) |
\(5-4y\) | \(4\) | \(8\) | \(2\) | \(1\) | \(16\) |
\(y\) | \(\frac{1}{4}\) | \(-\frac{3}{4}\) | \(\frac{3}{4}\) | \(1\) | \(-\frac{11}{4}\) |
Vậy x = 8 ; y = 1
(x-2)(y+1)=-4
⇔xy+x-2y-2=-4
⇔-31+x-2y-2=-4
⇔x-2y=4+2+31
⇔x-2y=39
⇔x=39+2y
⇔y=x-39 / 2
1)ta có x.y=23=1.23=(-1)(-23)⇒các cặp (x,y)là(1,23);(23,1);(-1,-23);(-23;-1)
vậy......
2) ta có:(x-1 ).(y+2)= -4=-1.4=1.(-4)=-2.2=2.(-2)
⇒th1:x-1=-1 y+2=4
x=-1+1=0 y=4-2=2
th2:x-1=1 y+2=-4
x=1+1=2 y=-4-2=-6
th3:x-1=-2 y+2=2
x=-2+1=-1 y=2-2=0
th4:x-1=2 y+2=-2
x=2+1=3 y=-2-2=-4
vậy các cặp (x,y)là(0,2);(2,-6);(-1,0);(3,-4)