Cho hình thang cân ABCD cạnh bên là AD và BC ngoại tiếp đường tròn tâm I bán kính R = 2
a. Chứng minh rằng hai tam giác IAD và IBC vuông
b. Cho AB = 2x (0 < x < 2). Tính diện tích hình thang ABCD theo x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)
Bài 2:
Ta có: ABCD là hình thang cân
nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)
hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)
Gọi O là trung điểm AD
\(\Rightarrow OA=OB=OC=OD=a\)
\(\Rightarrow\) O là tâm đường tròn ngoại tiếp đáy
Gọi I là trung điểm SD \(\Rightarrow IO\perp\left(ABCD\right)\) đồng thời I là tâm đường tròn ngoại tiếp SAD (tam giác SAD vuông tạm A)
\(\Rightarrow I\) là tâm mặt cầu ngoại tiếp
\(SD=\sqrt{SA^2+AD^2}=2a\sqrt{2}\)
\(\Rightarrow R=\dfrac{1}{2}SD=a\sqrt{2}\)