K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

B A D C O M E

a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

=> Tứ giác ABCD là hình vuông

+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:

=> \(AB^2=OA^2+OB^2=2R^2\)

Khi đó diện tích tứ giác ABCD:

\(S=AB^2=2R^2\)

b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)

Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC

Theo Pytago thuận ta có:

\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)

\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)

c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC

Tương tự, ta có OAE=OEA

=> OEA=MCA

=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)

AH
Akai Haruma
Giáo viên
7 tháng 6 2021

Lời giải:

Gọi giao của $BO$ và $AC$ là $H$

Vì $BA=BC; OA=OC$ nên $BO$ là trung trực của $AC$

$\Rightarrow BO$ vuông góc với $AC$ tại trung điểm $H$ của $AC$.

Do đó $HO$ là đường trung bình ứng với cạnh $CD$ của tam giác $ACD$

$\Rightarrow HO=2$

$BH=BO-HO=R-2$
Theo định lý Pitago:

$BC^2-BH^2=CH^2=CO^2-HO^2$

$\Leftrightarrow (4\sqrt{3})^2-(R-2)^2=R^2-2^2$

$\Leftrightarrow 48-(R-2)^2=R^2-4$

$\Rightarrow R=6$ (cm)

 

AH
Akai Haruma
Giáo viên
7 tháng 6 2021

Hình vẽ:

4 tháng 5 2023

Cho em xin đáp án câu c bài này ah 

30 tháng 11 2019